A space-time theory of mesoscale rainfall using random cascades

被引:195
|
作者
Over, TM
Gupta, VK
机构
[1] UNIV COLORADO, CTR STUDY EARTH SPACE, CIRES, BOULDER, CO 80309 USA
[2] UNIV COLORADO, DEPT GEOL SCI, BOULDER, CO 80309 USA
关键词
D O I
10.1029/96JD02033
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Following a brief review of relevant theoretical and empirical spatial results, a theory of space-time rainfall, applicable to fields advecting without deformation of the coordinates, is presented and tested. In this theory, spatial rainfall fields are constructed from discrete multiplicative cascades of independent and identically distributed (iid) random variables called generators. An extension to space-time assumes that these generators are lid stochastic processes indexed by time. This construction preserves the spatial structure of the cascades, while enabling it to evolve in response to a nonstationary large-scale forcing, which is specified externally. The construction causes the time and space dimensions to have fundamentally different stochastic structures. The time dimension of the process has an evolutionary behavior that distinguishes between past and future, while the spatial dimensions have an isotropic stochastic structure. This anisotropy between time and space leads to the prediction of the breakdown of G. I. Taylor's hypothesis of fluid turbulence after a short time, as is observed empirically. General, nonparametric, predictions of the theory regarding the spatial scaling properties of two-point temporal cross moments are developed and applied to a tracked rainfall field in a case study. These include the prediction of the empirically observed increase of correlation times as resolution decreases and the scaling of temporal cross moments, a new finding suggested by this theory.
引用
收藏
页码:26319 / 26331
页数:13
相关论文
共 50 条
  • [21] A Rate-Theory Approach to Irradiation Damage Modeling with Random Cascades in Space and Time
    Carter, Jesse J.
    Howland, William H.
    Smith, Richard W.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (01): : 93 - 101
  • [22] Space-time calibration of radar rainfall data
    Brown, PE
    Diggle, PJ
    Lord, ME
    Young, PC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 : 221 - 241
  • [23] Space-time variability and dynamics of rainfall - Preface
    Foufoula-Georgiou, E
    Tsonis, A
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D21) : 26161 - 26163
  • [24] Evidence of dynamic scaling in space-time rainfall
    Venugopal, V
    Foufoula-Georgiou, E
    Sapozhnikov, V
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D24) : 31599 - 31610
  • [25] Space-Time Characterization of Rainfall Field in Tuscany
    Mazza, Alessandro
    WATER, 2017, 9 (02):
  • [26] The Space-Time Representation of Extraordinary Rainfall Events
    Manfreda, Salvatore
    ECOHYDROLOGY, 2024,
  • [27] The Space-Time Model According to Dimensional Continuous Space-Time Theory
    Martini, Luiz Cesar
    2014 INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS (SCIETECH 2014), 2014, 495
  • [28] Models for space-time random functions
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2016, 43 : 5 - 19
  • [29] ON THEORY OF DISCRETE SPACE-TIME
    KADYSHEVSKII, VG
    DOKLADY AKADEMII NAUK SSSR, 1961, 3661 : 70 - &
  • [30] Resampling for space-time random fields
    Sylvan, Dana
    Târcolea, Constantin
    Paris, Adrian Stere
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (04): : 83 - 88