An Electronic Nose System for Aromatic Rice Classification

被引:8
|
作者
Abdullah, A. H. [1 ]
Adom, A. H. [1 ]
Shakaff, A. Y. Md [1 ]
Ahmad, M. N. [1 ]
Zakaria, A. [1 ]
Fikri, N. A. [1 ]
Omar, O. [2 ]
机构
[1] Univ Malaysia Perlis, Kangar 01000, Perlis, Malaysia
[2] MARDI, Seberang Prai 13200, Penang, Malaysia
关键词
Aromatic Rice Classification; Electronic Nose; Embedded System; HCA; PCA; ANN;
D O I
10.1166/sl.2011.1629
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Aromatic rice is a variety of rice with good cooking qualities such as nice aroma and flavour. It is pricier because it is only suitable to be cultivated in regions with specific climatic and soil conditions. Presently, the aromatic rice quality classification uses either Isotope Ratio Mass Spectrometry (IRMS), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Near Infrared (NIR) or Deoxyribonucleic Acid (DNA). The rice aroma can also be classified using Gas Chromatography Mass Spectrometry (GC-MS), human panels or Electronic Nose (e-nose). The training for the human panels is lengthy, but the results are comparable to those using the said instrument analysis. However, the use of human panels has significant drawbacks such as fatigue, inconsistent and time consuming. This paper presents the development of a new cost-effective, portable, e-nose prototype with embedded data processing capabilities for aromatic rice classification. This system is intended to be used to assist the human panels. The e-nose utilises Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) for data analysis. An Artificial Neural Network (ANN) was used to classify the unknown samples. The results show that the e-nose is able to successfully classify the aromatic rice with high accuracy.
引用
收藏
页码:850 / 855
页数:6
相关论文
共 50 条
  • [41] The combination of an electronic tongue and an electronic nose for improved classification of fruit juices
    Winquist, F
    Wide, P
    Lundström, I
    EUROSENSORS XII, VOLS 1 AND 2, 1998, : 1087 - 1090
  • [42] Sensor Fusion of Electronic Nose and Electronic Tongue for Classification of Orthosiphon stamineus
    Zakaria, A.
    Shakaff, A. Y. M.
    Adom, A. H.
    Ahmad, M. N.
    Shaari, A. R.
    Jaafar, M. N.
    Abdullah, A. H.
    Fikri, N. A.
    Kamarudin, L. M.
    SENSOR LETTERS, 2011, 9 (02) : 837 - 840
  • [43] Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose
    Ravi, Ramasamy
    Taheri, Ali
    Khandekar, Durga
    Millas, Reneth
    BIOSENSORS-BASEL, 2019, 9 (02):
  • [44] Electronic Nose System by Neural Networks
    Omatu, Sigeru
    Yoshioka, Michifumi
    Matsuyama, Kengo
    DISTRIBUTED COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS, SOFT COMPUTING, AND AMBIENT ASSISTED LIVING, PT II, PROCEEDINGS, 2009, 5518 : 307 - 314
  • [45] An electronic nose system to diagnose illness
    Gardner, JW
    Shin, HW
    Hines, EL
    SENSORS AND ACTUATORS B-CHEMICAL, 2000, 70 (1-3) : 19 - 24
  • [46] Preconcentrator of gas system ''Electronic nose''
    Khatko, V. V.
    DEVICES AND METHODS OF MEASUREMENTS, 2012, (02): : 47 - 50
  • [47] Comparison of classification methods in breath analysis by electronic nose
    Leopold, Jan Hendrik
    Bos, Lieuwe D. J.
    Sterk, Peter J.
    Schultz, Marcus J.
    Fens, Niki
    Horvath, Ildiko
    Bikov, Andras
    Montuschi, Paolo
    Di Natale, Corrado
    Yates, Deborah H.
    Abu-Hanna, Ameen
    JOURNAL OF BREATH RESEARCH, 2015, 9 (04)
  • [48] Electronic Nose System for Ganoderma Detection
    Abdullah, A. H.
    Adom, A. H.
    Shakaff, A. Y. Md.
    Ahmad, M. N.
    Saad, M. A.
    Tan, E. S.
    Fikri, N. A.
    Markom, M. A.
    Zakaria, A.
    SENSOR LETTERS, 2011, 9 (01) : 353 - 358
  • [49] Electronic nose and neural network use for the classification of honey
    Benedetti, S
    Mannino, S
    Sabatini, AG
    Marcazzan, GL
    APIDOLOGIE, 2004, 35 (04) : 397 - 402
  • [50] Personal Shirt Odor Classification Using an Electronic Nose
    Chansri, Chana
    Srinonchat, Jakkree
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 2, 2010, : 562 - 565