ON POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC

被引:8
|
作者
Malicki, Maciej [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
D O I
10.2178/jsl/1305810757
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the set of all Polish groups admitting a compatible complete left-invariant metric (called CLI) is coanalytic non-Borel as a subset of a standard Borel space of all Polish groups. As an application of this result, we show that there does not exist a weakly universal CLI group. This, in particular, answers in the negative a question of H. Becker.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 50 条
  • [31] Extremals of a Left-Invariant Sub-Finsler Metric on the Engel Group
    V. N. Berestovskii
    I. A. Zubareva
    Siberian Mathematical Journal, 2020, 61 : 575 - 588
  • [32] Extremals of a Left-Invariant Sub-Finsler Metric on the Engel Group
    Berestovskii, V. N.
    Zubareva, I. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (04) : 575 - 588
  • [33] LEFT-INVARIANT PARA-SASAKIAN STRUCTURES ON LIE GROUPS
    Smolentsev, N. K.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2019, (62): : 27 - 37
  • [34] A classification of left-invariant symplectic structures on some Lie groups
    Moscoso, Luis Pedro Castellanos
    Tamaru, Hiroshi
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (02): : 471 - 491
  • [35] ON LIE-GROUPS WITH LEFT-INVARIANT SYMPLECTIC OR KAHLERIAN STRUCTURES
    LICHNEROWICZ, A
    MEDINA, A
    LETTERS IN MATHEMATICAL PHYSICS, 1988, 16 (03) : 225 - 235
  • [36] A classification of left-invariant symplectic structures on some Lie groups
    Luis Pedro Castellanos Moscoso
    Hiroshi Tamaru
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 471 - 491
  • [37] Maximal Hypoellipticity for Left-Invariant Differential Operators on Lie Groups
    Bruno, Tommaso
    JOURNAL OF LIE THEORY, 2019, 29 (03) : 801 - 809
  • [38] LEFT-INVARIANT PSEUDO-EINSTEIN METRICS ON LIE GROUPS
    Chen, Sheng
    Liang, Ke
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (02) : 236 - 246
  • [39] Integral Representation of Local Left-Invariant Functionals in Carnot Groups
    Maione, A.
    Vecchi, E.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 1 - 14
  • [40] Left-Invariant Pseudo-Einstein Metrics on Lie Groups
    Sheng Chen
    Ke Liang
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 236 - 246