A Context-aware Framework for ML Models on Spatio-temporal Data Streams

被引:0
|
作者
Elmamooz, Golnaz [1 ]
机构
[1] Univ Bamberg, Chair Mobile Syst, Bamberg, Germany
关键词
mobility monitoring; context-aware learning; spatio-temporal stream learning;
D O I
10.1109/MDM52706.2021.00053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development in IoT infrastructure for collecting Spatio-temporal data calls for various machine learning model evolution. Several models can be used on data streams to extract knowledge about different aspects of mobility. To monitor mobility in a dynamic environment like a city or museum, it is necessary to track all ML models deployed in different locations and times. The goal of this research work is to develop a context-aware framework for monitoring mobility in dynamic environments. To develop such a framework, it is essential to define the challenges of managing different ML models on Spatio-temporal data streams.
引用
下载
收藏
页码:261 / 263
页数:3
相关论文
共 50 条
  • [41] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254
  • [42] Context-Aware Duplicate Detection in Semi-structured Data Streams
    Shukla, Parijat
    Somani, Arun K.
    2014 IEEE WORLD CONGRESS ON SERVICES (SERVICES), 2014, : 216 - 223
  • [43] A Framework for Scalable Correlation of Spatio-temporal Event Data
    Hagedorn, Stefan
    Sattler, Kai-Uwe
    Gertz, Michael
    DATA SCIENCE, 2015, 9147 : 9 - 15
  • [44] Developing FIA5 to FSTPR25 for modeling spatio-temporal relevancy in context-aware wayfinding systems
    Samany, Najmeh Neysani
    Delavar, Mahmoud Reza
    Chrisman, Nicholas
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (06) : 2453 - 2466
  • [45] An Extendable Framework for Managing Uncertain Spatio-Temporal Data
    Emrich, Tobias
    Franzke, Maximilian
    Kriegel, Hans-Peter
    Niedermayer, Johannes
    Renz, Matthias
    Zuefle, Andreas
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 1087 - 1090
  • [46] Developing FIA5 to FSTPR25 for modeling spatio-temporal relevancy in context-aware wayfinding systems
    Najmeh Neysani Samany
    Mahmoud Reza Delavar
    Nicholas Chrisman
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 2453 - 2466
  • [47] MobiPLACE*: A Distributed Framework for Spatio-Temporal Data Streams Processing Utilizing Mobile Clients' Processing Power
    Zakhary, Victor
    Elmongui, Hicham G.
    Nagi, Magdy H.
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING, AND SERVICES, 2014, 131 : 78 - 88
  • [48] Adaptive spatio-temporal models for satellite ecological data
    Carlo Grillenzoni
    Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9 : 158 - 180
  • [49] Asymptotic models and inference for extremes of spatio-temporal data
    Turkman, Kamil Feridun
    Turkman, M. A. Amaral
    Pereira, J. M.
    EXTREMES, 2010, 13 (04) : 375 - 397
  • [50] Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
    Kugele, Alexander
    Pfeil, Thomas
    Pfeiffer, Michael
    Chicca, Elisabetta
    FRONTIERS IN NEUROSCIENCE, 2020, 14