Numerical homogenization of the time - Harmonic acoustics of bone: The monophasic case

被引:0
|
作者
Fang, Ming [1 ]
Gilbert, Robert P. [2 ]
Guyenne, Philippe [2 ]
Vasilic, Ana [2 ]
机构
[1] Norfolk State Univ, Dept Math, Norfolk, VA 23504 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
two scale convergence; time harmonic waves; viscoelasticity of Kelvin-Voigt;
D O I
10.1615/IntJMultCompEng.v5.i6.30
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the predecessor to this work, we undertook a derivation of the time-harmonic, acoustic equations, idealizing the bone as a periodic arrangement of a Kelvin-Voigt viscoelastic porous matrix containing a viscous fluid, where we assumed that the fluid was slightly compressible. The effective equations for the monophasic vibrations were obtained, and existence and uniqueness was proved. In the current article, we perform numerical experiments, assuming that the trabeculae are isotropic.
引用
收藏
页码:461 / 471
页数:11
相关论文
共 50 条
  • [21] Adaptive boundary element method of time-harmonic exterior acoustics in two dimensions
    Chen, JT
    Chen, KH
    Chen, CT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (31) : 3331 - 3345
  • [22] ANALYSIS OF CONTINUOUS FORMULATIONS UNDERLYING THE COMPUTATION OF TIME-HARMONIC ACOUSTICS IN EXTERIOR DOMAINS
    HARARI, I
    HUGHES, TJR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 97 (01) : 103 - 124
  • [23] Isogeometric locally-conformal perfectly matched layer for time-harmonic acoustics
    Mi, Yongzhen
    Yu, Xiang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [24] Well-posedness of a generalized time-harmonic transport equation for acoustics in flow
    Bensalah, A.
    Joly, P.
    Mercier, J. -F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 3117 - 3137
  • [25] A low-Mach number model for time-harmonic acoustics in arbitrary flows
    Bonnet-Ben Dhia, A. S.
    Mercier, J. F.
    Millot, F.
    Pernet, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 1868 - 1875
  • [26] A DOMAIN DECOMPOSITION SOLVER FOR LARGE SCALE TIME-HARMONIC FLOW ACOUSTICS PROBLEMS
    Marchner, P.
    Beriot, H.
    LE Bras, S.
    Antoine, X.
    Geuzaine, C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2025, 47 (02): : B333 - B359
  • [27] Comparison of pressure and displacement formulations for finite elements in linear time-harmonic acoustics
    Retka, S.
    Hervella-Nieto, L.
    Marburg, S.
    COMPUTERS & STRUCTURES, 2015, 151 : 49 - 57
  • [28] Overcoming of the diffraction limit for the discrete case in time reversed acoustics
    Velazquez-Arcos, J. M.
    Vargas, C. A.
    Fernandez-Chapou, L.
    Granados-Samaniego, J.
    RIAO/OPTILAS 2007, 2008, 992 : 761 - 768
  • [29] Nonlinear Time Reversal Acoustics for Defect Localization: Numerical Study of Retrofocusing Properties
    Goursolle, Thomas
    Calle, Samuel
    Matar, Olivier Bou
    Dos Santos, Serge
    2006 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-5, PROCEEDINGS, 2006, : 317 - +
  • [30] Time-Harmonic Acoustic Scattering in a Complex Flow: A Full Coupling Between Acoustics and Hydrodynamics
    Bonnet-Ben Dhia, A. S.
    Mercier, J. F.
    Millot, F.
    Pernet, S.
    Peynaud, E.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (02) : 555 - 572