Numerical homogenization of the time - Harmonic acoustics of bone: The monophasic case

被引:0
|
作者
Fang, Ming [1 ]
Gilbert, Robert P. [2 ]
Guyenne, Philippe [2 ]
Vasilic, Ana [2 ]
机构
[1] Norfolk State Univ, Dept Math, Norfolk, VA 23504 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
two scale convergence; time harmonic waves; viscoelasticity of Kelvin-Voigt;
D O I
10.1615/IntJMultCompEng.v5.i6.30
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the predecessor to this work, we undertook a derivation of the time-harmonic, acoustic equations, idealizing the bone as a periodic arrangement of a Kelvin-Voigt viscoelastic porous matrix containing a viscous fluid, where we assumed that the fluid was slightly compressible. The effective equations for the monophasic vibrations were obtained, and existence and uniqueness was proved. In the current article, we perform numerical experiments, assuming that the trabeculae are isotropic.
引用
收藏
页码:461 / 471
页数:11
相关论文
共 50 条
  • [1] Homogenizing the time-harmonic acoustics of bone: The monophasic case
    Fang, Ming
    Gilbert, Robert P.
    Panchenko, Alexander
    Vasilic, Ana
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (3-4) : 331 - 340
  • [2] Numerical Homogenization of Bone Microstructure
    Kosturski, Nikola
    Margenov, Svetozar
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 140 - 147
  • [3] Maximum-entropy methods for time-harmonic acoustics
    Greco, F.
    Coox, L.
    Desmet, W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 306 : 1 - 18
  • [4] Trefftz-based methods for time-harmonic acoustics
    Pluymers, B.
    van Hal, B.
    Vandepitte, D.
    Desmet, W.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2007, 14 (04) : 343 - 381
  • [5] A survey of finite element methods for time-harmonic acoustics
    Harari, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) : 1594 - 1607
  • [6] Trefftz-Based Methods for Time-Harmonic Acoustics
    B. Pluymers
    B. van Hal
    D. Vandepitte
    W. Desmet
    Archives of Computational Methods in Engineering, 2007, 14 : 343 - 381
  • [7] Efforts to reduce computation time in numerical acoustics - An overview
    von Estorff, O
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2003, 89 (01): : 1 - 13
  • [8] Homogenization of time harmonic Maxwell equations and the frequency dispersion effect
    Amirat, Youcef
    Shelukhin, Vladimir
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (04): : 420 - 443
  • [9] Homogenization of time harmonic Maxwell equations: the effect of interfacial currents
    Amirat, Youcef
    Shelukhin, Vladimir V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) : 3140 - 3162
  • [10] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607