The inverse spectral problem for surfaces of revolution

被引:0
|
作者
Zelditch, S [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that isospectral simple analytic surfaces of revolution are isometric.
引用
收藏
页码:207 / 264
页数:58
相关论文
共 50 条
  • [31] Spectral solution of the inverse Mie problem
    Romanov, Andrey V.
    Konokhova, Anastasiya I.
    Yastrebova, Ekaterina S.
    Gilev, Konstantin V.
    Strokotov, Dmitry I.
    Chernyshev, Andrei V.
    Maltsev, Valeri P.
    Yurkin, Maxim A.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 200 : 280 - 294
  • [32] Inverse spectral problem for delta potentials
    Shabat, A. B.
    JETP LETTERS, 2015, 102 (09) : 620 - 623
  • [33] On the Uniqueness of the Solution of an Inverse Spectral Problem
    A. M. Akhtyamov
    Differential Equations, 2003, 39 : 1061 - 1066
  • [34] An inverse spectral problem for Hankel operators
    Martínez-Avendaño, RA
    Treil, SR
    JOURNAL OF OPERATOR THEORY, 2002, 48 (01) : 83 - 93
  • [35] A METHOD TO CALCULATE AN INVERSE SPECTRAL PROBLEM
    BYELYI, MU
    OKHRIMENKO, BA
    YABLOCHKOV, SM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1987, 30 (04): : 52 - 57
  • [36] On the uniqueness of the solution of an inverse spectral problem
    Akhtyamov, AM
    DIFFERENTIAL EQUATIONS, 2003, 39 (08) : 1061 - 1066
  • [37] The inverse spectral problem for transmission eigenvalues
    Cogar, Samuel
    Colton, David
    Leung, Yuk-J
    INVERSE PROBLEMS, 2017, 33 (05)
  • [38] Maximal spectral surfaces of revolution converge to a catenoid
    Ariturk, Sinan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):
  • [39] Approximation of the inverse scattering Steklov eigenvalues and the inverse spectral problem
    Isaac Harris
    Research in the Mathematical Sciences, 2021, 8
  • [40] Approximation of the inverse scattering Steklov eigenvalues and the inverse spectral problem
    Harris, Isaac
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (02)