The inverse spectral problem for surfaces of revolution

被引:0
|
作者
Zelditch, S [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that isospectral simple analytic surfaces of revolution are isometric.
引用
收藏
页码:207 / 264
页数:58
相关论文
共 50 条
  • [1] An inverse spectral problem on surfaces
    Castillon, Philippe
    COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (02) : 271 - 286
  • [2] Inverse spectral theory and the Minkowski problem for the surface of revolution
    Isozaki, Hiroshi
    Korotyaev, Evgeny L.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (04) : 321 - 341
  • [3] INVERSE SPECTRAL PROBLEM
    CHEUNG, SM
    HOCHSTADT, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) : 215 - 222
  • [4] On an inverse spectral problem
    Yu. V. Egorov
    Russian Journal of Mathematical Physics, 2017, 24 : 195 - 206
  • [5] On an inverse spectral problem
    Egorov, Yu. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (02) : 195 - 206
  • [6] Inverse spectral positivity for surfaces
    Berard, Pierre
    Castillon, Philippe
    REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) : 1237 - 1264
  • [7] The Steiner Problem on Surfaces of Revolution
    Elena A. Caffarelli
    Denise M. Halverson
    Ryan J. Jensen
    Graphs and Combinatorics, 2014, 30 : 315 - 342
  • [8] The Steiner Problem on Surfaces of Revolution
    Caffarelli, Elena A.
    Halverson, Denise M.
    Jensen, Ryan J.
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 315 - 342
  • [9] Etudes for the inverse spectral problem
    Makarov, Nikolai
    Poltoratski, Alexei
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (03): : 916 - 977
  • [10] THE INTEGRATED INVERSE SPECTRAL PROBLEM
    GRIBOV, LA
    JOURNAL OF MOLECULAR STRUCTURE, 1994, 327 (2-3) : 275 - 278