Construction of a linear plasma device for studying helicon plasmas relevant to plasma-wakefield accelerators

被引:10
|
作者
Green, Jonathan [1 ]
Schmitz, Oliver [1 ]
机构
[1] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2020年 / 29卷 / 04期
基金
美国国家科学基金会;
关键词
helicon; wakefield; MARIA; spectroscopy; laser induced fluorescence; LIF; source development; WAVES; ATTENUATION; DISPERSION;
D O I
10.1088/1361-6595/ab7852
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The magnetized anisotropic ion apparatus (MARIA) was constructed to study the density buildup and particle balance in helicon plasmas. This device will help address key questions surrounding the dynamics of the neutral argon population and the role it plays in defining the ultimate density achieved. Insights gained from this research are particularly important for meeting the demanding high density and high uniformity requirements of plasma based wakefield accelerator concepts. A key feature of the MARIA device is it is fully transparent borosilicate glass chamber which enables the flexible use and development of optical techniques for measuring plasma parameters like electron temperature and density. Whistler-mode behavior featuring very high on-axis ionization fraction and a linear relationship between electron density and magnetic field strength up to 5 x 10(18) m(-3) has been measured with an RF compensated Langmuir probe in argon with 700 W RF power, 650 G at the antenna, and 2 mTorr neutral pressure. Laser induced fluorescence measurements, which build on the Langmuir probe measurements, are able to fully constrain the 2D particle balance by enabling ion and neutral sources and sinks to be spatially resolved. Initial flow velocity measurements in the axial direction are presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [42] Energy depletion and re-acceleration of driver electrons in a plasma-wakefield accelerator
    Pena, F.
    Lindstrom, C. A.
    Beinortaite, J.
    Svensson, J. Bjoerklund
    Boulton, L.
    Diederichs, S.
    Foster, B.
    Garland, J. M.
    Caminal, P. Gonzalez
    Loisch, G.
    Schroeder, S.
    Thevenet, M.
    Wesch, S.
    Wood, J. C.
    Osterhoff, J.
    D'Arcy, R.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [43] Scheme for proton-driven plasma-wakefield acceleration of positively charged particles in a hollow plasma channel
    Yi, Longqing
    Shen, Baifei
    Lotov, Konstantin
    Ji, Liangliang
    Zhang, Xiaomei
    Wang, Wenpeng
    Zhao, Xueyan
    Yu, Yahong
    Xu, Jiancai
    Wang, Xiaofeng
    Shi, Yin
    Zhang, Lingang
    Xu, Tongjun
    Xu, Zhizhan
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2013, 16 (07):
  • [44] Scaling laws of design parameters for plasma wakefield accelerators
    Uhm, Han S.
    Nam, In H.
    Suk, Hyyong
    PHYSICS LETTERS A, 2012, 376 (03) : 165 - 168
  • [45] Radiation reaction of betatron oscillation in plasma wakefield accelerators
    Zeng, Ming
    Seto, Keita
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [46] Accurate modeling of the hose instability in plasma wakefield accelerators
    Mehrling, T. J.
    Benedetti, C.
    Schroeder, C. B.
    de la Ossa, A. Martinez
    Osterhoff, J.
    Esarey, E.
    Leemans, W. P.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [47] PROTOPLASMA - Proton-driven plasma-wakefield experiment at Fermilab: Stages and Approach
    Thangaraj, J. C. T.
    Park, C. S.
    Lewis, J. D.
    Spentzouris, P.
    An, W.
    Mori, W.
    Joshi, C.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 644 - 649
  • [48] Ionization injection of 'inception' beams in plasma wakefield accelerators
    Amorim, Ligia Diana
    Vafaei-Najafabadi, Navid
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (10)
  • [49] Magnetically tapered plasma channels for laser wakefield accelerators
    Wang, C. M.
    Goedbloed, J. P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (08)
  • [50] Ponderomotively assisted ionization injection in plasma wakefield accelerators
    Zeng, Ming
    de la Ossa, Alberto Martinez
    Osterhoff, Jens
    NEW JOURNAL OF PHYSICS, 2020, 22 (12):