Spatiotemporal coherent modulation imaging for dynamic quantitative phase and amplitude microscopy

被引:7
|
作者
Zhang, Junhao [1 ,2 ]
Yang, Dongyu [1 ,2 ]
Tao, Ye [1 ,2 ]
Zhu, Yupeng [1 ,2 ]
Lv, Wenjin [1 ,2 ]
Miao, Dong [1 ,2 ]
Ke, Changjun [3 ]
Wang, Huaying [4 ]
Shi, Yishi [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[4] Hebei Univ Engn, Coll Math & Phys, Mandan 056038, Hebei, Peoples R China
来源
OPTICS EXPRESS | 2021年 / 29卷 / 23期
基金
中国国家自然科学基金;
关键词
RETRIEVAL;
D O I
10.1364/OE.434957
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The single-shot capability of coherent modulation imaging (CMI) makes it have great potential in the investigation of dynamic processes. Its main disadvantage is the relatively low signal-to-noise ratio (SNR) which affects the spatial resolution and reconstruction accuracy. Here, we propose the improvement of a general spatiotemporal CMI method for imaging of dynamic processes. By making use of the redundant information in time-series reconstructions, the spatiotemporal CMI can achieve robust and fast reconstruction with higher SNR and spatial resolution. The method is validated by numerical simulations and optical experiments. We combine the CMI module with an optical microscope to achieve quantitative phase and amplitude reconstruction of dynamic biological processes. With the reconstructed complex field, we also demonstrate the 3D digital refocusing ability of the CMI microscope. With further development, we expect the spatiotemporal CMI method can be applied to study a range of dynamic phenomena. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
引用
收藏
页码:38451 / 38464
页数:14
相关论文
共 50 条
  • [41] Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging
    Gannavarpu, Rajshekhar
    Bhaduri, Basanta
    Tangella, Krishnarao
    Popescu, Gabriel
    PLOS ONE, 2014, 9 (11):
  • [42] Amplitude, phase, and "coherent" images
    Vlasov, N. G.
    MEASUREMENT TECHNIQUES, 2006, 49 (06) : 567 - 571
  • [43] Amplitude, phase, and “coherent” images
    N. G. Vlasov
    Measurement Techniques, 2006, 49 : 567 - 571
  • [44] Quantitative phase microscopy through differential interference imaging
    King, Sharon V.
    Libertun, Ariel
    Piestun, Rafael
    Cogswell, Carol J.
    Preza, Chrysanthe
    JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (02)
  • [45] Optical Ptychographic Microscopy for Quantitative Anisotropic Phase Imaging
    Anthony, N.
    Cadenazzi, G.
    Nugent, K. A.
    Abbey, B.
    SPIE BIOPHOTONICS AUSTRALASIA, 2016, 10013
  • [46] Quantitative phase imaging via Fourier ptychographic microscopy
    Ou, Xiaoze
    Horstmeyer, Roarke
    Yang, Changhuei
    Zheng, Guoan
    OPTICS LETTERS, 2013, 38 (22) : 4845 - 4848
  • [47] QUANTITATIVE PHASE IMAGING IN CONFOCAL MICROSCOPY BY OPTICAL DIFFERENTIATION
    KULAWIEC, AW
    MOORE, DT
    APPLIED OPTICS, 1994, 33 (28): : 6582 - 6590
  • [48] Quantitative phase imaging by gradient retardance optical microscopy
    Zhang, Jinming
    Sarollahi, Mirsaeid
    Luckhart, Shirley
    Harrison, Maria J.
    Vasdekis, Andreas E.
    SCIENTIFIC REPORTS, 2024, 14 (01): : 9754
  • [49] Design of Portable Quantitative Phase Microscopy Imaging System
    Zhao Yingran
    Yan Keding
    Li Jiayi
    Ma Yan
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [50] Targeted Enzyme Activity Imaging with Quantitative Phase Microscopy
    Tanwar, Swati
    Wu, Lintong
    Zahn, Noah
    Raj, Piyush
    Ghaemi, Behnaz
    Chatterjee, Arnab
    Bulte, JeffW. M.
    Barman, Ishan
    NANO LETTERS, 2023, 23 (10) : 4602 - 4608