Estimation of dislocation density from precession electron diffraction data using the Nye tensor

被引:44
|
作者
Leff, A. C. [1 ]
Weinberger, C. R. [2 ]
Taheri, M. L. [1 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国能源部;
关键词
Nye tensor; Automated crystallographic orientation mapping in transmission electron microscopy (ACOM-TEM); Dislocation density; Plastic deformation; BACKSCATTER DIFFRACTION; ORIENTATION; DISTRIBUTIONS; GRADIENTS; BOUNDARY;
D O I
10.1016/j.ultramic.2015.02.002
中图分类号
TH742 [显微镜];
学科分类号
摘要
The Nye tensor offers a means to estimate the geometrically necessary dislocation density of a crystalline sample based on measurements of the orientation changes within individual crystal grains. In this paper, the Nye tensor theory is applied to precession electron diffraction automated crystallographic orientation mapping (PED-ACOM) data acquired using a transmission electron microscope (TEM). The resulting dislocation density values are mapped in order to visualize the dislocation structures present in a quantitative manner. These density maps are compared with other related methods of approximating local strain dependencies in dislocation-based microstructural transitions from orientation data. The effect of acquisition parameters on density measurements is examined. By decreasing the step size and spot size during data acquisition, an increasing fraction of the dislocation content becomes accessible. Finally, the method described herein is applied to the measurement of dislocation emission during in situ annealing of Cu in IBM in order to demonstrate the utility of the technique for characterizing microstructural dynamics. (C) 2015 Elsevier By, All rights reserved.
引用
收藏
页码:9 / 21
页数:13
相关论文
共 50 条
  • [21] The failure mechanism at adiabatic shear bands of titanium alloy: High-precision survey using precession electron diffraction and geometrically necessary dislocation density calculation
    Liu, Xin
    Zhou, Yu
    Zhu, Xinjie
    Wang, Duoduo
    Fan, Qunbo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 746 : 322 - 331
  • [22] Strategies for full structure solution of intermetallic compounds using precession electron diffraction zonal data
    Samuha, Shmuel
    Krimer, Yaakov
    Meshi, Louisa
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 1032 - 1041
  • [23] A reference-area-free strain mapping method using precession electron diffraction data
    Zhao, Dexin
    Patel, Aniket
    Barbosa, Aaron
    Hansen, Marcus H.
    Wang, Ainiu L.
    Dong, Jiaqi
    Zhang, Yuwei
    Umale, Tejas
    Karaman, Ibrahim
    Shamberger, Patrick
    Banerjee, Sarbajit
    Pharr, Matt
    Xie, Kelvin Y.
    ULTRAMICROSCOPY, 2023, 247
  • [24] Structure determination of intermetallics using Precession Electron Diffraction.
    Meshi, Louisa
    Samuha, Shmuel
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S99 - S99
  • [25] Rietveld analysis of policrystalline materials using precession of electron diffraction
    Prodan, G.
    Ciupina, V.
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2010, 15 (03): : 102 - 108
  • [26] Unraveling the structure of Vaterite using precession electron diffraction tomography
    Steciuk, Gwladys
    Chateigner, Daniel
    Palatinus, Lukas
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E327 - E327
  • [27] Towards Routine Structure Solution using Precession Electron Diffraction
    Midgley, P. A.
    Eggeman, A. S.
    White, T. A.
    Bithell, E. G.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 738 - 739
  • [28] Towards Routine Structure Solution using Precession Electron Diffraction
    Midgley, Paul A.
    Eggeman, Alexander S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S3 - S3
  • [29] Unsupervised machine learning applied to scanning precession electron diffraction data
    Martineau, Ben H.
    Johnstone, Duncan N.
    van Helvoort, Antonius T. J.
    Midgley, Paul A.
    Eggeman, Alexander S.
    ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2019, 5
  • [30] Quantitative 3D electron diffraction data by precession and electron rotation methods
    Hovmoller, Sven
    Oleynikov, Peter
    Sun, Junliang
    Zhang, Daliang
    Zou, Xiaodong
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C76 - C76