Fast forecasting with simplified kernel regression machines

被引:1
|
作者
He, Wenwu [1 ]
Wang, Zhizhong [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
来源
CIS: 2007 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PROCEEDINGS | 2007年
关键词
D O I
10.1109/CIS.2007.52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel machines, including support vector machines, regularized networks and Gaussian process etc, have been widely used in forecasting. However standard algorithms are often time consuming. To this end, we propose a new method for imposing the sparsity of kernel regression machines. Different to previous methods, it incrementally finds a set of basis functions that minimizes the primal cost functions directly. The main advantage of out method lies in its ability to form very good approximations for kernel regression machines with a clear control on the computation complexity as well as the training time. Experiments on two real time series and benchmark Sunspot assess the feasibility of out method.
引用
收藏
页码:60 / +
页数:3
相关论文
共 50 条
  • [21] Simplified support vector machines via kernel-based clustering
    Zeng, Zhi-Qiang
    Gao, Ji
    Guo, Hang
    AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4304 : 1189 - +
  • [22] Regression random machines: An ensemble support vector regression modelwith free kernel choice
    Ara, Anderson
    Maia, Mateus
    Louzada, Francisco
    Macedo, Samuel
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [23] Forecasting the Subway Volume Using Local Linear Kernel Regression
    Yang, Yu-chen
    Ding, Chao
    Jin, Yong
    HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS, HCIBGO 2020, 2020, 12204 : 254 - 265
  • [24] Nonlinear forecasting with many predictors using kernel ridge regression
    Exterkate, Peter
    Groenen, Patrick J. F.
    Heij, Christiaan
    van Dijk, Dick
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 736 - 753
  • [25] Support Vector Regression with Levy Distribution Kernel for Stock Forecasting
    Lai, Lucas K. C.
    Liu, James N. K.
    Hu, Yanxing
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 654 - 657
  • [26] GHI forecasting using Gaussian process regression: kernel study
    Tolba, Hanany
    Dkhili, Nouha
    Nou, Julien
    Eynard, Julien
    Thil, Stephane
    Grieu, Stephan
    IFAC PAPERSONLINE, 2019, 52 (04): : 455 - 460
  • [27] Kernel regression based short-term load forecasting
    Agarwal, Vivek
    Bougaev, Anton
    Tsoukalas, Lefteri
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 701 - 708
  • [28] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [29] Fast kernel extreme learning machine for ordinal regression
    Shi, Yong
    Li, Peijia
    Yuan, Hao
    Miao, Jianyu
    Niu, Lingfeng
    KNOWLEDGE-BASED SYSTEMS, 2019, 177 : 44 - 54
  • [30] Fast metabolite identification with Input Output Kernel Regression
    Brouard, Celine
    Shen, Huibin
    Duehrkop, Kai
    d'Alche-Buc, Florence
    Boecker, Sebastian
    Rousu, Juho
    BIOINFORMATICS, 2016, 32 (12) : 28 - 36