HUP-BMA: An Integration of Hydrologic Uncertainty Processor and Bayesian Model Averaging for Streamflow Forecasting

被引:7
|
作者
Darbandsari, Pedram [1 ]
Coulibaly, Paulin [1 ,2 ,3 ]
机构
[1] McMaster Univ, Dept Civil Engn, Hamilton, ON, Canada
[2] McMaster Univ, Sch Earth Environm & Soc, Hamilton, ON, Canada
[3] United Nations Univ, Inst Water Environm & Hlth, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
uncertainty; streamflow forecasting; Bayesian Model Averaging; hydrologic uncertainty processor; PRECIPITATION ANALYSIS CAPA; PERFORMANCE CRITERIA; OBJECTIVE FUNCTIONS; ENSEMBLE; RIVER; MULTIMODEL; DECOMPOSITION; ASSIMILATION; VALIDATION; CALIBRATE;
D O I
10.1029/2020WR029433
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncertainty quantification and providing probabilistic streamflow forecasts are of particular interest for water resource management. The hydrologic uncertainty processor (HUP) is a well-known Bayesian approach used to quantify hydrologic uncertainty based on observations and deterministic forecasts. This uncertainty quantification is model-specific; however, utilizing information from multiple hydrologic models should be advantageous and should lead to better probabilistic forecasts. Using seven, structurally different, conceptual models, this study first aims at evaluating the effects of implementing different hydrologic models on HUP performance. Second, using the concepts of the Bayesian Model Averaging (BMA) approach, a multimodel HUP-based Bayesian postprocessor (HUP-BMA) is proposed where the combination of posterior distributions derived from HUP with different hydrologic models are used to better quantify the hydrologic uncertainty. All postprocessing approaches are applied for medium-range daily streamflow forecasting (1-14 days ahead) in two watersheds located in Ontario, Canada. The results indicate that the HUP forecasts for short lead-times are negligibly affected by implementing different hydrologic models, while with increasing lead-time and flow magnitude, they significantly depend on the quality of the deterministic forecast. Moreover, the superiority of the proposed HUP-BMA method over HUP is demonstrated based on various verification metrics in both watersheds. Additionally, HUP-BMA outperformed the original BMA in quantifying hydrologic uncertainty for short lead-times. However, by increasing lead-time, considering the effects of initially observed flow on HUP-BMA formulation may not be beneficial. So, its modified version unconditioned on initial observations is preferred.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Multi-model ensemble hydrologic prediction using Bayesian model averaging
    Duan, Qingyun
    Ajami, Newsha K.
    Gao, Xiaogang
    Sorooshian, Soroosh
    ADVANCES IN WATER RESOURCES, 2007, 30 (05) : 1371 - 1386
  • [32] A Bayesian Processor of Uncertainty for Precipitation Forecasting Using Multiple Predictors and Censoring
    Reggiani, Paolo
    Boyko, Oleksiy
    MONTHLY WEATHER REVIEW, 2019, 147 (12) : 4367 - 4387
  • [33] A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA)
    Gharekhani, Maryam
    Nadiri, Ata Allah
    Khatibi, Rahman
    Sadeghfam, Sina
    Moghaddam, Asghar Asghari
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 303
  • [34] Performance assessment of hydrologic uncertainty processor through integration of the principal components analysis
    Yao, Yi
    Liang, Zhongmin
    Zhao, Weimin
    Jiang, Xiaolei
    Li, Binquan
    JOURNAL OF WATER AND CLIMATE CHANGE, 2019, 10 (02) : 373 - 390
  • [35] Introducing entropy-based Bayesian model averaging for streamflow forecast
    Darbandsari, Pedram
    Coulibaly, Paulin
    JOURNAL OF HYDROLOGY, 2020, 591
  • [36] A Bayesian Hierarchical Network Model for Daily Streamflow Ensemble Forecasting
    Ossandon, Alvaro
    Rajagopalan, Balaji
    Lall, Upmanu
    Nanditha, J. S.
    Mishra, Vimal
    WATER RESOURCES RESEARCH, 2021, 57 (09)
  • [37] Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    Krzysztofowicz, R
    WATER RESOURCES RESEARCH, 1999, 35 (09) : 2739 - 2750
  • [38] Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination
    Li, Weihua
    Sankarasubramanian, A.
    WATER RESOURCES RESEARCH, 2012, 48
  • [39] Forecasting natural gas consumption in China by Bayesian Model Averaging
    Zhang, Wei
    Yang, Jun
    ENERGY REPORTS, 2015, 1 : 216 - 220
  • [40] FORECASTING REALIZED VOLATILITY: A BAYESIAN MODEL-AVERAGING APPROACH
    Liu, Chun
    Maheu, John M.
    JOURNAL OF APPLIED ECONOMETRICS, 2009, 24 (05) : 709 - 733