Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy

被引:31
|
作者
Valero, C. [1 ]
Navarro, S. [1 ]
Navajas, D. [2 ,3 ,4 ]
Garcia-Aznar, J. M. [1 ]
机构
[1] Univ Zaragoza, Aragon Inst Engn Res, Dept Mech Engn, Multiscale Mech & Biol Engn M2BE, Zaragoza, Spain
[2] Inst Bioengn Catalonia, Barcelona 08028, Spain
[3] Ctr Invest Biomed Red Enfermedades Resp, Madrid 28029, Spain
[4] Univ Barcelona, Fac Med, E-08036 Barcelona, Spain
基金
欧洲研究理事会;
关键词
Nanoindentation; AFM; FEM; Soft-tissue; Cell mechanics; ELASTIC-MODULUS; INDENTATION EXPERIMENTS; HUMAN SKIN; CELLS; MODELS; TISSUES; FIBRIN; LAYERS; TIPS;
D O I
10.1016/j.jmbbm.2016.05.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 50 条
  • [1] Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements
    F. J. Espinoza Beltrán
    J. Muñoz-Saldaña
    D. Torres-Torres
    R. Torres-Martínez
    G. A. Schneider
    [J]. Journal of Materials Research, 2006, 21 : 3072 - 3079
  • [2] Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements
    Beltran, F. J. Espinoza
    Munoz-Saldana, J.
    Torres-Torres, D.
    Torres-Martinez, R.
    Schneider, G. A.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2006, 21 (12) : 3072 - 3079
  • [3] Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements
    Centro de Investigación y Estudios Avanzados del IPN, Unidad Querétaro, 76001 Querétaro Qro., Mexico
    不详
    [J]. J Mater Res, 2006, 12 (3072-3079):
  • [4] Single cell mechanics analyzed by atomic force microscopy and finite element simulation
    Peng, Xiaobo
    Zhao, Leqian
    Huang, Qiping
    Kong, Lingwen
    Wang, Guixue
    Ye, Zhiyi
    [J]. PHYSICA SCRIPTA, 2024, 99 (04)
  • [5] Finite-Element Simulation of Cantilever Vibrations in Atomic Force Acoustic Microscopy
    Espinoza Beltran, F. J.
    Scholz, T.
    Schneider, G. A.
    Munoz-Saldana, J.
    Rabe, U.
    Arnold, W.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 : 293 - 297
  • [6] Atomic Force Microscopy of Pharmaceutical and Biological Materials
    Chernoff, Donald A.
    [J]. NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS: LIFE SCIENCES, MEDICINE, AND BIO MATERIALS, 2008, : 700 - +
  • [7] Influencing Factors in Atomic Force Microscopy Based Mechanical Characterization of Biological Cells
    Managuli, V.
    Roy, S.
    [J]. EXPERIMENTAL TECHNIQUES, 2017, 41 (06) : 673 - 687
  • [8] Influencing Factors in Atomic Force Microscopy Based Mechanical Characterization of Biological Cells
    V. Managuli
    S. Roy
    [J]. Experimental Techniques, 2017, 41 : 673 - 687
  • [9] Mechanical characterization of nanoporous materials by use of atomic force acoustic microscopy methods
    Kopycinska-Mueller, M.
    Yeap, K-B
    Mahajan, S.
    Koehler, B.
    Kuzeyeva, N.
    Mueller, T.
    Zschech, E.
    Wolter, K-J
    [J]. NANOTECHNOLOGY, 2013, 24 (35)
  • [10] Mechanical characterization of nanopillars by atomic force microscopy
    Angeloni, L.
    Ganjian, M.
    Nouri-Goushki, M.
    Mirzaali, M. J.
    Hagen, C. W.
    Zadpoor, A. A.
    Fratila-Apachitei, L. E.
    Ghatkesar, M. K.
    [J]. ADDITIVE MANUFACTURING, 2021, 39