Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements

被引:13
|
作者
Beltran, F. J. Espinoza
Munoz-Saldana, J. [1 ]
Torres-Torres, D.
Torres-Martinez, R.
Schneider, G. A.
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Unidad Queretaro, Queretaro 76001, Qro, Mexico
[2] Hamburg Univ Technol, Adv Ceram Grp, D-21073 Hamburg, Germany
[3] IPN, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Queretaro, Queretaro 76040, Qro, Mexico
关键词
D O I
10.1557/JMR.2006.0379
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Measurements of vibrational spectra of atomic force microscopy (AFM) microprobes in contact with a sample allow a good correlation between resonance frequencies shifts and the effective elastic modulus of the tip-sample system. In this work we use finite element methods for modeling the AFM microprobe vibration considering actual features of the cantilever geometry. This allowed us to predict the behavior of the cantilevers in contact with any sample for a wide range of effective tip-sample stiffness. Experimental spectra for glass and chromium were well reproduced for the numerical model, and stiffness values were obtained. We present a method to correlate the experimental resonance spectrum to the effective stiffness using realistic geometry of the cantilever to numerically model the vibration of the cantilever in contact with a sample surface. Thus, supported in a reliable finite element method (FEM) model, atomic force acoustic microscopy can be a quantitative technique for elastic-modulus measurements. Considering the possibility of tip-apex wear during atomic force acoustic microscopy measurements, it is necessary to perform a calibration procedure to obtain the tip-sample contact areas before and after each measurement.
引用
收藏
页码:3072 / 3079
页数:8
相关论文
共 50 条
  • [1] Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements
    F. J. Espinoza Beltrán
    J. Muñoz-Saldaña
    D. Torres-Torres
    R. Torres-Martínez
    G. A. Schneider
    [J]. Journal of Materials Research, 2006, 21 : 3072 - 3079
  • [2] Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements
    Centro de Investigación y Estudios Avanzados del IPN, Unidad Querétaro, 76001 Querétaro Qro., Mexico
    不详
    [J]. J Mater Res, 2006, 12 (3072-3079):
  • [3] Finite-Element Simulation of Cantilever Vibrations in Atomic Force Acoustic Microscopy
    Espinoza Beltran, F. J.
    Scholz, T.
    Schneider, G. A.
    Munoz-Saldana, J.
    Rabe, U.
    Arnold, W.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 : 293 - 297
  • [4] Cantilever dynamics in atomic force microscopy
    Raman, Arvind
    Melcher, John
    Tung, Ryan
    [J]. NANO TODAY, 2008, 3 (1-2) : 20 - 27
  • [5] Quantitative atomic force microscopy
    Soengen, Hagen
    Bechstein, Ralf
    Kuehnle, Angelika
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
  • [6] Critical factors in quantitative Atomic Force Acoustic Microscopy
    Marinello, F.
    Schiavuta, P.
    Carmignato, S.
    Savio, E.
    [J]. CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2010, 3 (01) : 49 - 54
  • [7] Atomic force acoustic microscopy for quantitative nanomechanical characterization
    Marinello, F.
    Schiavuta, P.
    Vezzu, S.
    Patelli, A.
    Carmignato, S.
    Savio, E.
    [J]. WEAR, 2011, 271 (3-4) : 534 - 538
  • [8] ACOUSTIC MICROSCOPY BY ATOMIC-FORCE MICROSCOPY
    RABE, U
    ARNOLD, W
    [J]. APPLIED PHYSICS LETTERS, 1994, 64 (12) : 1493 - 1495
  • [9] Quantitative elastic-property measurements at the nanoscale with atomic force acoustic microscopy
    Hurley, DC
    Kopycinska-Müller, M
    Kos, AB
    Geiss, RH
    [J]. ADVANCED ENGINEERING MATERIALS, 2005, 7 (08) : 713 - 718
  • [10] Dynamics of the cantilever in noncontact atomic force microscopy
    Sasaki, N
    Tsukada, M
    Tamura, R
    Abe, K
    Sato, N
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S287 - S291