On a certain formulation of the Einstein equations

被引:2
|
作者
Nurowski, P [1 ]
机构
[1] Univ Trieste, Dipartimento Sci Matemat, Trieste, Italy
[2] Univ Warsaw, Wydzial Fiz, Inst Fiz Teoret, Warsaw, Poland
关键词
D O I
10.1063/1.532544
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a certain differential system on an open set of R-6. The system locally defines a Lorentzian four-manifold satisfying the Einstein equations. The converse statement is indicated and its details are postponed to the forthcoming paper. (C) 1998 American Institute of Physics. [S0022-2488(98)01310-3].
引用
收藏
页码:5477 / 5480
页数:4
相关论文
共 50 条
  • [31] THE EINSTEIN TETRAD EQUATIONS IN THE 1ST-ORDER EQUATION MATRIX FORMULATION
    BABICHEV, LF
    KUVSHINOV, VI
    FYEDOROV, FI
    DOKLADY AKADEMII NAUK BELARUSI, 1985, 29 (10): : 889 - 892
  • [32] On certain classes of exact solutions of Einstein equations for rotating fields in conventional and nonconventional form
    Bhutani, OP
    Singh, K
    Kalra, DK
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (07) : 769 - 786
  • [33] Well-posedness of the scale-invariant tetrad formulation of the vacuum Einstein equations
    Garfinkle, D
    Gundlach, C
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (13) : 2679 - 2686
  • [34] A model problem for the initial-boundary value formulation of Einstein's field equations
    Reula, O
    Sarbach, O
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (02) : 397 - 435
  • [35] Numerical simulations with a first-order BSSN formulation of Einstein's field equations
    Brown, J. David
    Diener, Peter
    Field, Scott E.
    Hesthaven, Jan S.
    Herrmann, Frank
    Mroue, Abdul H.
    Sarbach, Olivier
    Schnetter, Erik
    Tiglio, Manuel
    Wagman, Michael
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [36] A GENERAL FORMULATION OF CERTAIN BOUNDARY PROBLEMS FOR ELLIPTICAL DIFFERENTIAL EQUATIONS IN PARTIAL DERIVATIVES
    VISHIK, MI
    SOBOLEV, SL
    DOKLADY AKADEMII NAUK SSSR, 1956, 111 (03): : 521 - 523
  • [37] EINSTEIN, OR A CERTAIN CONCEPTION OF SCIENCE
    DIRAC, P
    CHIMIA, 1979, 33 (09) : 346 - 347
  • [38] Spherically symmetric black holes and affine-null metric formulation of Einstein's equations
    Gallo, Emanuel
    Kozameh, Carlos
    Madler, Thomas
    Moreschi, Osvaldo M.
    Perez, Alejandro
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [39] Linear-nonlinear formulation of Einstein equations for the two-body problem in general relativity
    Laguna, P
    PHYSICAL REVIEW D, 1999, 60 (08):
  • [40] An operator-based local discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations
    Miller, Jonah M.
    Schnetter, Erik
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (01)