Multiple convolution formulae on bivariate fibonacci and lucas polynomials

被引:0
|
作者
Chu, Wenchang [1 ]
Yan, Qinglun [1 ]
机构
[1] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of the formal power series method, we investigate multiple convolutions concerning the bivariate Fibonacci and Lucas polynomials. Several closed formulae are established.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条
  • [41] GENERALIZED CYCLOTOMIC POLYNOMIALS, FIBONACCI CYCLOTOMIC POLYNOMIALS, AND LUCAS CYCLOTOMIC POLYNOMIALS
    KIMBERLING, C
    FIBONACCI QUARTERLY, 1980, 18 (02): : 108 - 126
  • [42] BINARY LUCAS AND FIBONACCI POLYNOMIALS .1.
    FREI, G
    MATHEMATISCHE NACHRICHTEN, 1980, 96 : 83 - 112
  • [43] CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS
    HOGGATT, VE
    BICKNELLJOHNSON, M
    FIBONACCI QUARTERLY, 1978, 16 (05): : 385 - 402
  • [44] Five convolution formulae of orthogonal polynomials
    Chu, Wenchang
    Tang, Peipei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) : 8825 - 8832
  • [45] Reciprocal Formulae among Pell and Lucas Polynomials
    Bai, Mei
    Chu, Wenchang
    Guo, Dongwei
    MATHEMATICS, 2022, 10 (15)
  • [46] SUBSEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS WITH GEOMETRIC SUBSCRIPTS
    Chu, Wenchang
    Li, Nadia N.
    FIBONACCI QUARTERLY, 2012, 50 (01): : 27 - 35
  • [47] ASYMPTOTIC FORMULAE FOR BIVARIATE MELLIN CONVOLUTION OPERATORS
    C. Bardaro
    I. Mantellini
    Analysis in Theory and Applications, 2008, 24 (04) : 377 - 394
  • [48] Fibonacci and Lucas Polynomials in n-gon
    Kuloglu, Bahar
    Ozkan, Engin
    Marin, Marin
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (02): : 127 - 140
  • [49] A Note on Fibonacci & Lucas and Bernoulli & Euler Polynomials
    Pita Ruiz Velasco, Claudio de Jesus
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (02)
  • [50] Formulas for convolution Fibonacci numbers and polynomials
    Liu, GD
    FIBONACCI QUARTERLY, 2002, 40 (04): : 352 - 357