Multiple convolution formulae on bivariate fibonacci and lucas polynomials

被引:0
|
作者
Chu, Wenchang [1 ]
Yan, Qinglun [1 ]
机构
[1] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of the formal power series method, we investigate multiple convolutions concerning the bivariate Fibonacci and Lucas polynomials. Several closed formulae are established.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条
  • [1] BIVARIATE GAUSSIAN FIBONACCI AND LUCAS POLYNOMIALS
    Asci, Mustafa
    Gurel, Esref
    ARS COMBINATORIA, 2013, 109 : 461 - 472
  • [2] Bivariate Fibonacci and Lucas Like Polynomials
    Kocer, E. Gokcen
    Tuncez, Serife
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (01): : 109 - 113
  • [3] On Some Properties of Bivariate Fibonacci and Lucas Polynomials
    Belbachir, Hacene
    Bencherif, Farid
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (02)
  • [4] Incomplete Bivariate Fibonacci and Lucas p-Polynomials
    Tasci, Dursun
    Firengiz, Mirac Cetin
    Tuglu, Naim
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [5] GENERATING FUNCTIONS FOR THE GENERALIZED BIVARIATE FIBONACCI AND LUCAS POLYNOMIALS
    Erkus-Duman, Esra
    Tuglu, Naim
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 815 - 821
  • [6] Special transforms of the generalized bivariate Fibonacci and Lucas polynomials
    Yilmaz, Nazmiye
    Aktas, Ibrahim
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (03): : 640 - 651
  • [7] Identities involving partial derivatives of bivariate Fibonacci and Lucas polynomials
    Yu, HQ
    Liang, CG
    FIBONACCI QUARTERLY, 1997, 35 (01): : 19 - 23
  • [8] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [9] SOME PROPERTIES OF BIVARIATE GAUSSIAN FIBONACCI AND LUCAS p-POLYNOMIALS
    Gurel, Esref
    Asci, Mustafa
    ARS COMBINATORIA, 2018, 137 : 123 - 139
  • [10] FIBONACCI AND LUCAS POLYNOMIALS
    DOMAN, BGS
    WILLIAMS, JK
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 90 (NOV) : 385 - 387