Degradation and mineralization of ciprofloxacin by gas-liquid discharge non-thermal plasma

被引:39
|
作者
Hu, Shuheng [1 ,3 ]
Liu, Xinghao [1 ,2 ,3 ]
Xu, Zimu [1 ,3 ,4 ,5 ]
Wang, Jiaquan [1 ]
Li, Yunxia [1 ]
Shen, Jie [2 ,4 ,5 ]
Lan, Yan [2 ,4 ,5 ]
Cheng, Cheng [2 ,4 ,5 ]
机构
[1] Hefei Univ Technol, Sch Resources & Environm Engn, Hefei 230009, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
[3] Hefei Univ Technol, Intelligent Mfg Technol Res Inst, Hefei 230088, Anhui, Peoples R China
[4] Chinese Acad Sci, Ctr Med Phys & Technol, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[5] Chinese Acad Sci, Hefei Inst Phys Sci, Anhui Prov Key Lab Med Phys & Technol, Hefei 230031, Anhui, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
gas-liquid plasma; ciprofloxacin; mineralization; degradation mechanism; DIELECTRIC BARRIER DISCHARGE; PERSONAL CARE PRODUCTS; PHOTO-FENTON PROCESS; HYDROXYL RADICALS; WASTE-WATER; REACTION-KINETICS; AQUEOUS-SOLUTION; RATE CONSTANTS; OXIDATION; ANTIBIOTICS;
D O I
10.1088/2058-6272/aade82
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A typical quinolones antibiotic ciprofloxacin (CIP) in aqueous solution was degraded by a gas-liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species (RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and pH values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers (isopropanol and CCl4) on center dot OH and H center dot were added into the reaction system and the oxidation effects of center dot OH radicals have been proved with high degradation capacity on CIP. Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS (H2O2 and O-3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of center dot OH. The degradation intermediates were determined by the method of electrospray ionization (+)-mass spectroscopy, and the possible degradation mechanism were presented.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] DESTRUCTION OF LIMONENE IN A NON-THERMAL DC PLASMA DISCHARGE
    Van Durme, J.
    Dewulf, J.
    Leys, C.
    Morent, R.
    Van Langenhove, H.
    CAPPSA 2005, PROCEEDINGS, 2005, : 123 - 126
  • [32] Fluid Modeling of a Non-Thermal Plasma with Dielectric Barrier Discharge and Argon as a Diluent Gas
    Mas-Peiro, Cristina
    Llovell, Felix
    Pou, Josep O.
    PROCESSES, 2024, 12 (07)
  • [33] Application of non-thermal plasma on gas cleansing
    Pacheco, M.
    Pacheco, J.
    Moreno, H.
    Santana, A.
    PHYSICA SCRIPTA, 2008, T131
  • [34] Non-thermal Plasma Reformation of Liquid Fuels
    Hartvigsen, J.
    Elangovan, S.
    Hollist, Michele
    Czernichowski, Piotr
    Frost, Lyman
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2825 - 2833
  • [35] Degradation and mechanism analysis of chloroxylenol in aqueous solution by gas-liquid discharge plasma combined with ozonation
    Ma, Keke
    Zhou, Lu
    Bai, Yu
    Xin, Yiying
    Chen, Mingru
    Li, Heping
    Bao, Chengyu
    Zhou, Yuexi
    RSC ADVANCES, 2021, 11 (21) : 12907 - 12914
  • [36] Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol
    Shang, Kefeng
    Wang, Hao
    Li, Jie
    Lu, Na
    Jiang, Nan
    Wu, Yan
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (06)
  • [37] Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol
    商克峰
    王浩
    李杰
    鲁娜
    姜楠
    吴彦
    Plasma Science and Technology, 2017, (06) : 120 - 126
  • [38] Efficient degradation of Bisphenol A by dielectric barrier discharge non-thermal plasma: Performance, degradation pathways and mechanistic consideration
    Yang, Jingren
    Zeng, Deqian
    Hassan, Muhammad
    Ma, Zhongbao
    Dong, Lingqian
    Xie, Yu
    He, Yiliang
    CHEMOSPHERE, 2022, 286
  • [39] Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge
    Zhang W.
    Xing Y.
    Hao L.
    Wang J.
    Cui Y.
    Yan X.
    Jia H.
    Su W.
    Chemosphere, 2023, 340
  • [40] Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol
    商克峰
    王浩
    李杰
    鲁娜
    姜楠
    吴彦
    Plasma Science and Technology, 2017, 19 (06) : 120 - 126