The Discounted Euler Equation: A Note

被引:35
|
作者
McKay, Alisdair [1 ]
Nakamura, Emi [2 ]
Steinsson, Jon [2 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
MONETARY-POLICY; INTEREST-RATES; FRAMEWORK; PRICES;
D O I
10.1111/ecca.12226
中图分类号
F [经济];
学科分类号
02 ;
摘要
We present a simple model with income risk and borrowing constraints that yields a discounted Euler equation'. This feature of the model mutes the extent to which news about far future real interest rates (i.e. forward guidance) affects current outcomes. We show that this simple model approximates the outcomes of a rich model with uninsurable income risk and borrowing constraints in response to a forward guidance shock. The model is simple enough to be easily incorporated into simple New Keynesian models. We illustrate this with an application to the zero lower bound.
引用
收藏
页码:820 / 831
页数:12
相关论文
共 50 条
  • [41] Estimating the Euler equation for output
    Fuhrer, JC
    Rudebusch, GD
    JOURNAL OF MONETARY ECONOMICS, 2004, 51 (06) : 1133 - 1153
  • [42] Desingularization of Vortices for the Euler Equation
    Smets, Didier
    Van Schaftingen, Jean
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (03) : 869 - 925
  • [43] ON EULER'S EQUATION AND 'EPDIFF'
    Mumford, David
    Michor, Peter W.
    JOURNAL OF GEOMETRIC MECHANICS, 2013, 5 (03): : 319 - 344
  • [44] Euler equation on a rotating surface
    Taylor, Michael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (10) : 3884 - 3945
  • [45] The Euler equation around the world
    Stracca, Livio
    B E JOURNAL OF MACROECONOMICS, 2017, 17 (02):
  • [46] THE EULER EQUATION AND ONSAGER CONJECTURE
    Boling Guo
    Guangwu Wang
    Annals of Applied Mathematics, 2017, 33 (04) : 331 - 339
  • [47] CLASS OF SOLUTIONS OF EULER EQUATION
    DESQ, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (01): : 1 - 3
  • [48] GENERALIZED EULER HEAT EQUATION
    Barhoumi, Abdessatar
    Ouerdiane, Habib
    Rguigui, Hafedh
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 : 99 - +
  • [49] A Vlasov description of the Euler equation
    Smereka, P
    NONLINEARITY, 1996, 9 (05) : 1361 - 1386
  • [50] ON EULER-CAUCHY EQUATION
    SCHWEIZER, B
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (06): : 565 - &