Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum

被引:22
|
作者
Zou, Yalan [1 ,2 ,3 ]
Chen, Tao [1 ,2 ,3 ]
Feng, Lili [1 ,2 ,3 ]
Zhang, Shuanghong [1 ,2 ,3 ]
Xing, Dongxu [4 ]
Wang, Zhiwen [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Biochem Engn, Peiyang Pk, Tianjin 300354, Peoples R China
[2] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin, Peoples R China
[3] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, SynBio Res Platform, Tianjin, Peoples R China
[4] Guangdong Acad Agr Sci, Sericulture & Agri Food Res Inst, Guangzhou, Guangdong, Peoples R China
关键词
5-Aminolevulinic acid; Corynebacterium glutamicum; Glycine synthesis; Serine pathway; RECOMBINANT ESCHERICHIA-COLI; L-SERINE PRODUCTION; EFFICIENT PRODUCTION; GENE; HYDROXYMETHYLTRANSFERASE; CONSTRUCTION; ACCUMULATION; EXPRESSION; SYPS-062; GROWTH;
D O I
10.1007/s10529-017-2362-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To construct a strain of Corynebacterium glutamicum capable of efficiently producing 5-aminolevulinic acid (5-ALA) via the C4 pathway by modification of serine and glycine pathway using glucose as sole carbon source. The recombinant C. glutamicum strain AP2 harboring a codon-optimized hemA gene from Rhodobacter sphaeroides was used as host strain for 5-ALA production. A plasmid harboring the serine operon, which contained serB, serC and the site-specific mutant serA (Delta 197) , was constructed and introduced into C. glutamicumAP2, leading to an increase of 70% in 5-ALA production. Further overexpression of the glyA gene increased production of 5-ALA by 150% over the control. 5-ALA production was thus significantly enhanced by engineering the glycine biosynthetic pathway. C.glutamicum AG3 produced 3.4 +/- 0.2 g 5-ALA/l in shake-flask cultures in CGIIIM medium with the addition of 7.5 g glycine/l. This is the first report of remodeling the serine and glycine biosynthetic pathway to improve the production of 5-ALA in C. glutamicum.
引用
收藏
页码:1369 / 1374
页数:6
相关论文
共 50 条
  • [41] Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical
    Kim, Hee Taek
    Khang, Tae Uk
    Baritugo, Kei-Anne
    Hyun, Sung Min
    Kang, Kyoung Hee
    Jung, Sol Hee
    Song, Bong Keun
    Park, Kyungmoon
    Oh, Min-Kyu
    Kim, Gi Bae
    Kim, Hyun Uk
    Lee, Sang Yup
    Park, Si Jae
    Joo, Jeong Chan
    METABOLIC ENGINEERING, 2019, 51 : 99 - 109
  • [42] Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine
    Tsuge, Yota
    Kawaguchi, Hideo
    Yamamoto, Shogo
    Nishigami, Yoshiko
    Sota, Masahiro
    Ogino, Chiaki
    Kondo, Akihiko
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2018, 82 (07) : 1252 - 1259
  • [43] Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    Jojima, Toru
    Noburyu, Ryoji
    Sasaki, Miho
    Tajima, Takahisa
    Suda, Masako
    Yukawa, Hideaki
    Inui, Masayuki
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (03) : 1165 - 1172
  • [44] Metabolic Engineering of the Tricarboxylic Acid Cycle for Improved Lysine Production by Corynebacterium glutamicum
    Becker, Judith
    Klopprogge, Corinna
    Schroeder, Hartwig
    Wittmann, Christoph
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (24) : 7866 - 7869
  • [45] Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production
    Marc Schmollack
    Felix Werner
    Janine Huber
    Dirk Kiefer
    Manuel Merkel
    Rudolf Hausmann
    Daniel Siebert
    Bastian Blombach
    Biotechnology for Biofuels and Bioproducts, 15
  • [46] Modification of Corynebacterium glutamicum by Metabolic Engineering for Pyruvate Production
    Fang Z.
    Cao W.
    Liu J.
    Zhang S.
    Xiao Z.
    Shan Y.
    Journal of Food Science and Technology (China), 2023, 41 (03): : 139 - 147
  • [47] Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production
    Schmollack, Marc
    Werner, Felix
    Huber, Janine
    Kiefer, Dirk
    Merkel, Manuel
    Hausmann, Rudolf
    Siebert, Daniel
    Blombach, Bastian
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2022, 15 (01):
  • [48] Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine
    Kataoka, Naoya
    Matsutani, Minenosuke
    Matsushita, Kazunobu
    Yakushi, Toshiharu
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2023, 69 (01): : 11 - 23
  • [49] Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    Toru Jojima
    Ryoji Noburyu
    Miho Sasaki
    Takahisa Tajima
    Masako Suda
    Hideaki Yukawa
    Masayuki Inui
    Applied Microbiology and Biotechnology, 2015, 99 : 1165 - 1172
  • [50] Metabolic Engineering of Corynebacterium glutamicum for the Production of Flavonoids and Stilbenoids
    Chu, Luan Luong
    Tran, Chau T. Bang
    Pham, Duyen T. Kieu
    Nguyen, Hoa T. An
    Nguyen, Mi Ha
    Pham, Nhung Mai
    Nguyen, Anh T. Van
    Phan, Dung T.
    Do, Ha Minh
    Nguyen, Quang Huy
    MOLECULES, 2024, 29 (10):