Cointegrated Commodity Markets and Pricing of Derivatives in a Non-Gaussian Framework

被引:2
|
作者
Benth, Fred Espen [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
关键词
Cointegration; Heath-Jarrow-Morton modeling; Ornstein-Uhlenbeck processes; Levy processes; Fourier transform; Spread options; Quanto options; TERM STRUCTURE MODELS; OPTION; TRANSFORM; VALUATION; DRIVEN;
D O I
10.1007/978-3-319-45875-5_20
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyse cointegration in commodity markets based on continuoustime non-Gaussian stochastic processes. Using simple Levy-based processes, we propose a cointegrated spot price model in two commodity markets, and derive the implied futures price dynamics using the Esscher transform to introduce a pricing measure. A simple Heath-Jarrow-Morton cointegrated futures price dynamics is introduced motivated from these considerations. We study the question of pricing spread and quanto options in commodity markets, based on a Fourier approach.
引用
收藏
页码:477 / 496
页数:20
相关论文
共 50 条
  • [31] Option Pricing by Mean Correcting Method for Non-Gaussian Lvy Processes
    Luo Gen YAO
    Gang YANG
    Xiang Qun YANG
    [J]. ActaMathematicaSinica, 2013, 29 (10) : 1927 - 1938
  • [32] NON-GAUSSIAN STATISTICS OF OIL PRICING TIME-SERIES: A CASE STUDY
    Momeni, M.
    Kourakis, I.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (01) : 101 - 110
  • [33] A theory of non-Gaussian option pricing (vol 2, pg 415, 2002)
    Borland, Lisa
    [J]. QUANTITATIVE FINANCE, 2007, 7 (06) : 701 - 701
  • [34] Pricing of Commodity Derivatives on Processes with Memory
    Benth, Fred Espen
    Khedher, Asma
    Vanmaele, Michele
    [J]. RISKS, 2020, 8 (01)
  • [35] Option pricing by mean correcting method for non-Gaussian Lévy processes
    Luo Gen Yao
    Gang Yang
    Xiang Qun Yang
    [J]. Acta Mathematica Sinica, English Series, 2013, 29 : 1927 - 1938
  • [36] Option Pricing by Mean Correcting Method for Non-Gaussian Lvy Processes
    Luo Gen YAO
    Gang YANG
    Xiang Qun YANG
    [J]. Acta Mathematica Sinica,English Series, 2013, (10) : 1927 - 1938
  • [37] Option pricing with non-Gaussian scaling and infinite-state switching volatility
    Baldovin, Fulvio
    Caporin, Massimiliano
    Caraglio, Michele
    Stella, Attilio L.
    Zamparo, Marco
    [J]. JOURNAL OF ECONOMETRICS, 2015, 187 (02) : 486 - 497
  • [38] Non-gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 225 - 247
  • [39] Non-Gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (2-3) : 99 - 124
  • [40] NON-GAUSSIAN DIFFUSION
    LASKIN, NV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10): : 1565 - 1576