Cycle-Consistent Adversarial Networks for Smoke Detection and Removal in Endoscopic Images

被引:2
|
作者
Hu, Zhisen [1 ]
Hu, Xiyuan [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
关键词
D O I
10.1109/EMBC46164.2021.9629657
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
During endoscopic surgery, smoke removal is important and meaningful for increasing the visual quality of endoscopic images. However, unlike natural image dehaze, it is practical impossible to build a large paired endoscopic image training dataset with/without smoke. Therefore, in this paper, we propose a new approach, called Desmoke-CycleGAN, which combined detection and removal of smoke together, to improve the CycleGAN model for endoscopic image smoke removal. The detector can provide information about smoke locations and densities, which helps the GAN model to be more stable and efficient for smoke removal. Although some imperfections still exist, the experimental results have demonstrated that this method outperforms other state-of-the-art smoke removal approaches with unpaired real endoscopic images.
引用
收藏
页码:3070 / 3073
页数:4
相关论文
共 50 条
  • [1] Road detection using cycle-consistent adversarial networks
    Wang, Yucheng
    Zhang, Juan
    Jiang, Hao
    Fang, Zhijun
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (05)
  • [2] Lund jet images from generative and cycle-consistent adversarial networks
    Carrazza, Stefano
    Dreyer, Frederic A.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (11):
  • [3] Lund jet images from generative and cycle-consistent adversarial networks
    Stefano Carrazza
    Frédéric A. Dreyer
    [J]. The European Physical Journal C, 2019, 79
  • [4] Cycle-consistent Conditional Adversarial Transfer Networks
    Li, Jingjing
    Chen, Erpeng
    Ding, Zhengming
    Zhu, Lei
    Lu, Ke
    Huang, Zi
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 747 - 755
  • [5] Generating Cartoon Images from Face Photos with Cycle-Consistent Adversarial Networks
    Zhang, Tao
    Zhang, Zhanjie
    Jia, Wenjing
    He, Xiangjian
    Yang, Jie
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2733 - 2747
  • [6] Effective Facial Obstructions Removal with Enhanced Cycle-Consistent Generative Adversarial Networks
    Wang, Yuming
    Ou, Xiao
    Tu, Lai
    Liu, Ling
    [J]. ARTIFICIAL INTELLIGENCE AND MOBILE SERVICES - AIMS 2018, 2018, 10970 : 210 - 220
  • [7] Interactive Elearning Application for Cycle-Consistent Adversarial Networks
    Dragomir, Marilena-Catalina
    Pupezescu, Valentin
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING (ICVL-2020), 2020, : 439 - 444
  • [8] Generating Cuneiform Signs with Cycle-Consistent Adversarial Networks
    Rusakov, Eugen
    Brandenbusch, Kai
    Fisseler, Denis
    Somel, Turna
    Fink, Gernot A.
    Weichert, Frank
    Muller, Gerfrid G. W.
    [J]. PROCEEDINGS OF THE 2019 WORKSHOP ON HISTORICAL DOCUMENT IMAGING AND PROCESSING (HIP' 19), 2019, : 19 - 24
  • [9] Removal of Visual Disruption Caused by Rain Using Cycle-Consistent Generative Adversarial Networks
    Tang, Lai Meng
    Lim, Li Hong
    Siebert, Paul
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 551 - 566
  • [10] Gender based face aging with cycle-consistent adversarial networks
    Yang, Chun
    Lv, Zhihan
    [J]. IMAGE AND VISION COMPUTING, 2020, 100