Removal of Visual Disruption Caused by Rain Using Cycle-Consistent Generative Adversarial Networks

被引:0
|
作者
Tang, Lai Meng [1 ]
Lim, Li Hong [1 ]
Siebert, Paul [1 ]
机构
[1] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
来源
关键词
CycleGAN; ID-CGAN; Generative adversarial network; STREAKS REMOVAL; IMAGE; DECOMPOSITION;
D O I
10.1007/978-3-030-11021-5_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of removing rain disruption from images for outdoor vision systems. The Cycle-Consistent Generative Adversarial Network (CycleGAN) is proposed as a more promising rain removal algorithm, as compared to the state-of-the-art Image De-raining Conditional Generative Adversarial Network (ID-CGAN). The CycleGAN has an advantage in its ability to learn the underlying relationship between the rain and rain-free domain without the need of paired domain examples. Based on rain physical properties and its various phenomena, five broad categories of real rain distortions are proposed in this paper. For a fair comparison, both networks were trained on the same set of synthesized rain-and-ground-truth image-pairs provided by the ID-CGAN work, and subsequently tested on real rain images which fall broadly under these five categories. The comparison results demonstrated that the CycleGAN is superior in removing real rain distortions.
引用
收藏
页码:551 / 566
页数:16
相关论文
共 50 条
  • [1] Effective Facial Obstructions Removal with Enhanced Cycle-Consistent Generative Adversarial Networks
    Wang, Yuming
    Ou, Xiao
    Tu, Lai
    Liu, Ling
    [J]. ARTIFICIAL INTELLIGENCE AND MOBILE SERVICES - AIMS 2018, 2018, 10970 : 210 - 220
  • [2] Normalization of breast MRIs using cycle-consistent generative adversarial networks
    Modanwal, Gourav
    Vellal, Adithya
    Mazurowski, Maciej A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208 (208)
  • [3] Unsupervised Cycle-Consistent Generative Adversarial Networks for Pan Sharpening
    Zhou, Huanyu
    Liu, Qingjie
    Weng, Dawei
    Wang, Yunhong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] On Translation and Reconstruction Guarantees of the Cycle-Consistent Generative Adversarial Networks
    Chakrabarty, Anish
    Das, Swagatam
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [5] Adversarial sample attacks algorithm based on cycle-consistent generative networks
    Gao, Haoqi
    Yang, Xing
    Hu, Yihua
    Liang, Zhenyu
    Xu, Haoli
    Wang, Bingwen
    Mu, Hua
    Wang, Yangyang
    [J]. APPLIED SOFT COMPUTING, 2024, 162
  • [6] Lund jet images from generative and cycle-consistent adversarial networks
    Carrazza, Stefano
    Dreyer, Frederic A.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (11):
  • [7] Lund jet images from generative and cycle-consistent adversarial networks
    Stefano Carrazza
    Frédéric A. Dreyer
    [J]. The European Physical Journal C, 2019, 79
  • [8] Road detection using cycle-consistent adversarial networks
    Wang, Yucheng
    Zhang, Juan
    Jiang, Hao
    Fang, Zhijun
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (05)
  • [9] MRI Image Harmonization using Cycle-Consistent Generative Adversarial Network
    Modanwal, Gourav
    Vellal, Adithya
    Buda, Mateusz
    Mazurowski, Maciej A.
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [10] Mandarin Electro-Laryngeal Speech Enhancement Using Cycle-Consistent Generative Adversarial Networks
    Qian, Zhaopeng
    Xiao, Kejing
    Yu, Chongchong
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):