Numerical Investigation of the Fractional-Order Lienard and Duffing Equations Arising in Oscillating Circuit Theory

被引:31
|
作者
Singh, Harendra [1 ]
Srivastava, H. M. [2 ,3 ,4 ]
机构
[1] Post Grad Coll, Dept Math, Ghazipur, India
[2] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Azerbaijan Univ, Dept Math & Informat, Baku, Azerbaijan
来源
FRONTIERS IN PHYSICS | 2020年 / 8卷
关键词
fractional Lienard equation; fractional Duffing equation; spectral colocation method; Jacobi polynomials; convergence analysis; EXPLICIT EXACT-SOLUTIONS; OPERATIONAL MATRIX; APPROXIMATE SOLUTION; CALCULUS; POLYNOMIALS; ALGORITHM; MODEL;
D O I
10.3389/fphy.2020.00120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we present the Jacobi spectral colocation method to solve the fractional model of Lienard and Duffing equations with the Liouville-Caputo fractional derivative. These equations are the generalization of the spring-mass system equation and describe the oscillating circuit. The main reason for using this technique is high accuracy and low computational cost compared to some other methods. The main solution behaviors of these equations are due to fractional orders, which are explained graphically. The convergence analysis of the proposed method is also provided. A comparison is made between the exact and approximate solutions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Chaos in a Fractional Order Duffing System: a circuit implementation
    Buscarino, A.
    Caponetto, R.
    Fortuna, L.
    Murgano, E.
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 2573 - 2577
  • [42] Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples
    Radwan, A. G.
    Soliman, A. M.
    Elwakil, A. S.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2008, 36 (04) : 473 - 492
  • [43] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Du, Lin
    Zhao, Yunping
    Lei, Youming
    Hu, Jian
    Yue, Xiaole
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1921 - 1933
  • [44] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Yongjun Shen
    Hang Li
    Shaopu Yang
    Mengfei Peng
    Yanjun Han
    Nonlinear Dynamics, 2020, 102 : 1485 - 1497
  • [45] Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
    Niu, Jiangchuan
    Li, Xiaofeng
    Xing, Haijun
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (07):
  • [46] Primary resonance of a fractional-order Rayleigh-Duffing system
    Chen, Jufeng
    Wang, Yuanyuan
    Shen, Yongjun
    Li, Xianghong
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (16): : 111 - 117
  • [47] Resonance study of fractional-order strongly nonlinear duffing systems
    Liu, J.
    Zhang, P.
    Gui, H.
    Xing, T.
    Liu, H.
    Zhang, C.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (09) : 3317 - 3326
  • [48] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Lin Du
    Yunping Zhao
    Youming Lei
    Jian Hu
    Xiaole Yue
    Nonlinear Dynamics, 2018, 92 : 1921 - 1933
  • [49] Crises in a non-autonomous fractional-order Duffing system
    Liu Xiao-Jun
    Hong Ling
    Jiang Jun
    ACTA PHYSICA SINICA, 2016, 65 (18)
  • [50] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    J H YANG
    M A F SANJUÁN
    W XIANG
    H ZHU
    Pramana, 2013, 81 : 943 - 957