d-fold Hermite-Gauss quadrature

被引:2
|
作者
Hagler, BA [1 ]
机构
[1] Univ Texas, Dept Sci & Math, Odessa, TX 79762 USA
关键词
quadrature; orthogonal rational functions;
D O I
10.1016/S0377-0427(00)00575-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend results presented in Gustafon and Hagler (J. Comput. Appl. Math. 105 (1999) 317-326); Hagler (Ph.D. Thesis, University of Colorado, 1997; J. Comput. Appl. Math. 104 (1999) 163-171; Hagler et al. (Lecture Notes in Pure and Applied Mathematics Series, Vol. 1999, Marcel Dekker, New York, 1998, pp. 187-208) by giving a construction of systems of orthogonal rational functions from systems of orthogonal polynomials and explicating the (2(d) n)-point d-fold Hermite-Gauss quadrature formula of parameters y, lambda > 0: integral (infinity)(-infinity) f(x)e(-[v[d](gamma,lambda)(x)]2) dx = Sigma (2dn)(k=1)f(h(d,n,k)((gamma,lambda)))H-d,n,k((gamma,lambda)) + E-d,n((gamma,lambda))[f(x)], where v([d](gamma,lambda))(x) is the d-fold composition of v((gamma,lambda))(x) = (1/lambda)(x - y/x) and where the abscissas h(d,n,k)((y,lambda)) and weights H-d,n,k((y,lambda)) are given recursively in terms of the abscissas and weights associated with the classical Hermite-Gauss quadrature. Error analysis, tables of numerical values for nodes, and examples and comparisons are included. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条
  • [21] Physical Light-Matter Interaction in Hermite-Gauss Space
    Steinberg, Shlomi
    Yan, Ling-Qi
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06):
  • [22] Hermite-Gauss series expansions applied to arrayed waveguide gratings
    García-Muñoz, V
    Muriel, MA
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (11) : 2331 - 2333
  • [23] Effect of aberrations on the beam quality factor of Hermite-Gauss beams
    Mphuthi, Nokwazi
    Bell, Teboho
    Mabena, Chemist M.
    [J]. OPTICS EXPRESS, 2023, 31 (24) : 39379 - 39395
  • [24] Search for Hermite-Gauss mode rotation in cholesteric liquid crystals
    Loffler, W.
    van Exter, M. P.
    't Hooft, G. W.
    Nienhuis, G.
    Broer, D. J.
    Woerdman, J. P.
    [J]. OPTICS EXPRESS, 2011, 19 (14): : 12978 - 12983
  • [25] The transformation of Hermite-Gauss beams with embedded optical vortex by lens system
    Monin, E. O.
    Ustinov, A. V.
    [J]. INTERNATIONAL CONFERENCE PHYSICA.SPB/2017, 2018, 1038
  • [26] Adaptive Hermite-Gauss decomposition method to analyze optical dielectric waveguides
    Ortega-Moñux, A
    Wangüemert-Pérez, JG
    Molina-Fernández, I
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (03): : 557 - 568
  • [27] Gauss-Hermite interval quadrature rule
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (04) : 544 - 555
  • [28] Gauss-Hermite interval quadrature rule
    Department of Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš, Rs
    [J]. Comput Math Appl, 4 (544-555):
  • [29] Fast modal analysis for Hermite-Gauss an beams via deep learning
    An, Yi
    Hou, Tianyue
    Li, Jun
    Huang, Liangjin
    Leng, Jinyong
    Yang, Lijia
    Zhou, Pu
    [J]. APPLIED OPTICS, 2020, 59 (07) : 1954 - 1959
  • [30] GAUSS-HERMITE QUADRATURE FOR THE BROMWICH INTEGRAL
    Weideman, J. A. C.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2200 - 2216