Relevance of the Dempster-Shafer Evidence Theory for Image Segmentation

被引:0
|
作者
Ben Chaabane, Salim [1 ]
Sayadi, Mounir [1 ]
Fnaiech, Farhat [1 ]
Brassart, Eric [2 ]
机构
[1] ESSTT, 5 Av Taha Hussein, Tunis 1008, Tunisia
[2] Univ Picardie, Amiens, France
关键词
Dempster-Shafer evidence theory; data fusion; uncertainty information; decision; color image segmentation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a new color image segmentation method based on data fusion techniques. The used methodology modeling in the Dempster-Shafer evidence theory is in general successful, for representing the information extracted from image as measures of belief. The proposed method addresses the information modelization problem and the color image segmentation within the context of Dempster-Shafer theory. The mass functions are computed from the probability that a pixel belong to a region. The mass functions are then combined with the Dempster rules of combination, and the maximum of mass function is used for decision-making. The computation of conflict between images, the modelization of both uncertainty and imprecision, the possible introduction of a priori information, witch are powerful aspects of the evidence theory and witch have a great influence on the final decision, are exploited in color image segmentation. We present quantitative and comparative results concerning color medical images.
引用
下载
收藏
页码:312 / +
页数:2
相关论文
共 50 条
  • [21] The combining rule of Dempster-Shafer theory for correlative evidence
    Wang, Ping
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [22] The reliable combination rule of evidence in Dempster-Shafer theory
    Wang, Ping
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 2, PROCEEDINGS, 2008, : 166 - 170
  • [23] On modal logic interpretation of Dempster-Shafer theory of evidence
    Harmanec, David
    Klir, George J.
    Watson, Thomas J.
    Resconi, Germano
    International Journal of Intelligent Systems, 1994, 9 (10): : 941 - 951
  • [24] Using the Dempster-Shafer Theory of Evidence to Rank Documents
    Jiuling Zhang**
    Tsinghua Science and Technology, 2012, 17 (03) : 241 - 247
  • [25] Expert finding by the Dempster-Shafer theory for evidence combination
    Mahani, Nafiseh Torkzadeh
    Dehghani, Mostafa
    Mirian, Maryam S.
    Shakery, Azadeh
    Taheri, Khalil
    EXPERT SYSTEMS, 2018, 35 (01)
  • [26] Fundamentals of the Dempster-Shafer Theory
    Peri, Joseph S. J.
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XXI, 2012, 8392
  • [27] Categorification of the Dempster-Shafer Theory
    Peri, Joseph S. J.
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXIV, 2015, 9474
  • [29] Application of Dempster-Shafer theory of evidence to the correlation problem
    Morelli, M
    DeSimone, AJ
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 759 - 762
  • [30] Interval comparison based on Dempster-Shafer theory of evidence
    Sevastjanow, P
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2004, 3019 : 668 - 675