Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence

被引:16
|
作者
Polanco, Juan Ignacio [1 ,2 ]
Muller, Nicolas P. [1 ]
Krstulovic, Giorgio [1 ]
机构
[1] Univ Cote Azur, Observ Cote Azur, CNRS, Lab JL Lagrange, Blvd Observ CS 34229, F-06304 Paris 4, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Ecole Cent Lyon, CNRS,INSA Lyon,LMFA,UMR5509, F-69130 Ecully, France
关键词
KOLMOGOROV TURBULENCE; VELOCITY CIRCULATION; VISUALIZATION; VORTICITY; UNIVERSAL; FLUID; MODEL;
D O I
10.1038/s41467-021-27382-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The understanding of turbulent flows is one of the biggest current challenges in physics, as no first-principles theory exists to explain their observed spatio-temporal intermittency. Turbulent flows may be regarded as an intricate collection of mutually-interacting vortices. This picture becomes accurate in quantum turbulence, which is built on tangles of discrete vortex filaments. Here, we study the statistics of velocity circulation in quantum and classical turbulence. We show that, in quantum flows, Kolmogorov turbulence emerges from the correlation of vortex orientations, while deviations-associated with intermittency-originate from their non-trivial spatial arrangement. We then link the spatial distribution of vortices in quantum turbulence to the coarse-grained energy dissipation in classical turbulence, enabling the application of existent models of classical turbulence intermittency to the quantum case. Our results provide a connection between the intermittency of quantum and classical turbulence and initiate a promising path to a better understanding of the latter. Turbulent flows may be regarded as an intricate collection of mutually-interacting vortices. Here, authors investigate the statistics of velocity circulation in quantum and classical turbulence and propose a connection between intermittency on both cases.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] VORTEX EQUILIBRIA IN TURBULENCE THEORY AND QUANTUM ANALOGS
    CHORIN, AJ
    AKAO, JH
    [J]. PHYSICA D, 1991, 52 (2-3): : 403 - 414
  • [32] Vortex Line Density Fluctuations of Quantum Turbulence
    Fujiyama, Shoji
    Tsubota, Makoto
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 158 (3-4) : 428 - 434
  • [33] Probing of quantum turbulence with the emitting vortex loops
    Nemirovskii, S. K.
    [J]. LOW TEMPERATURE PHYSICS, 2014, 40 (12) : 1116 - 1118
  • [34] Vortex Line Density Fluctuations of Quantum Turbulence
    Shoji Fujiyama
    Makoto Tsubota
    [J]. Journal of Low Temperature Physics, 2010, 158 : 428 - 434
  • [35] Local measurement of vortex statistics in quantum turbulence
    Woillez, Eric
    Valentin, Jerome
    Roche, Philippe-E
    [J]. EPL, 2021, 134 (04)
  • [36] Vortex diffusion and vortex-line hysteresis in radial quantum turbulence
    Saluto, L.
    Jou, D.
    Mongiovi, M. S.
    [J]. PHYSICA B-CONDENSED MATTER, 2014, 440 : 99 - 103
  • [37] Statistical Signature of Vortex Filaments in Classical Turbulence: Dog or Tail?
    Nemirovskii, S. K.
    [J]. JOURNAL OF ENGINEERING THERMOPHYSICS, 2020, 29 (01) : 14 - 25
  • [38] Statistical Signature of Vortex Filaments in Classical Turbulence: Dog or Tail?
    S. K. Nemirovskii
    [J]. Journal of Engineering Thermophysics, 2020, 29 : 14 - 25
  • [39] Vortex Dynamics: Quantum Versus Classical Regimes
    L. Thompson
    P. C. E. Stamp
    [J]. Journal of Low Temperature Physics, 2013, 171 : 526 - 538
  • [40] Vortex Dynamics: Quantum Versus Classical Regimes
    Thompson, L.
    Stamp, P. C. E.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 171 (5-6) : 526 - 538