Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data
被引:41
|
作者:
Xiao, Yawen
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
Xiao, Yawen
[1
]
Wu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Ctr Bioinformat & Computat Biol, Shanghai 200241, Peoples R ChinaShanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
Wu, Jun
[2
]
Lin, Zongli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USAShanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
Lin, Zongli
[3
]
机构:
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] East China Normal Univ, Ctr Bioinformat & Computat Biol, Shanghai 200241, Peoples R China
[3] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
Cancer diagnosis;
Deep learning;
Gene expression data;
Imbalanced data;
Wasserstein generative adversarial networks;
CLASSIFICATION;
PREDICTION;
BREAST;
D O I:
10.1016/j.compbiomed.2021.104540
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Background and objective: Cancer is a serious global disease due to its high mortality, and the key to effective treatment is accurate diagnosis. However, limited by sampling difficulty and actual sample size in clinical practice, data imbalance is a common problem in cancer diagnosis, while most conventional classification methods assume balanced data distribution. Therefore, addressing the imbalanced learning problem to improve the predictive performance of cancer diagnosis is significant. Methods: In the study, we dissect the data imbalance prevalent in cancer gene expression data and present an improved deep learning based Wasserstein generative adversarial network (WGAN) model, which provides a reliable training progress indicator and deeply explores the characteristics of data. The WGAN generates new samples from the minority class and solves the imbalance problem at the data level. Results: We analyze three publicly available data sets on RNA-seq of three kinds of cancer using the proposed WGAN and compare the results with those from two commonly adopted sampling methods. According to the results, through addressing the data imbalance problem, the balanced data distribution and the expanding sample size increase the prediction accuracy in all three data sets. Conclusions: Therefore, the proposed WGAN method is superior in solving the imbalanced learning problem of gene expression data, providing significantly better prediction performance in cancer diagnosis.
机构:
Univ Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, VietnamUniv Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, Vietnam
Phuong, Ha Thi Minh
Nguyet, Pham Vu Thu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, VietnamUniv Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, Vietnam
Nguyet, Pham Vu Thu
论文数: 引用数:
h-index:
机构:
Minh, Nguyen Huu Nhat
Hanh, Le Thi My
论文数: 0引用数: 0
h-index: 0
机构:
Univ Danang, Univ Sci & Technol, Da Nang 55000, VietnamUniv Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, Vietnam
Hanh, Le Thi My
Binh, Nguyen Thanh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, VietnamUniv Danang, Vietnam Korea Univ Informat & Commun Technol, Da Nang 55000, Vietnam
机构:
South China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R ChinaSouth China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
Yang, Guo
Zhong, Yong
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R ChinaSouth China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
Zhong, Yong
Yang, Lie
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R ChinaSouth China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
Yang, Lie
Tao, Hui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
Natl & Local Joint Engn Res Ctr Ind Frict & Lubri, Guangzhou 510700, Peoples R ChinaSouth China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
Tao, Hui
Li, Jianying
论文数: 0引用数: 0
h-index: 0
机构:
Zhaoqing Univ, Sch Mech & Automot Engn, Zhaoqing 526061, Peoples R ChinaSouth China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
Li, Jianying
Du, Ruxu
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R ChinaSouth China Univ Tectmol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
机构:
Shandong Huayu Univ Technol, Coll Elect Engn, Dezhou 253034, Peoples R ChinaShandong Huayu Univ Technol, Coll Elect Engn, Dezhou 253034, Peoples R China
Hao, Chuanzhu
Du, Junrong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Space Utilizat, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaShandong Huayu Univ Technol, Coll Elect Engn, Dezhou 253034, Peoples R China
Du, Junrong
Liang, Haoran
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Space Utilizat, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaShandong Huayu Univ Technol, Coll Elect Engn, Dezhou 253034, Peoples R China
机构:
Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
Zheng, Taisheng
Song, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
Song, Lei
Wang, Jianxing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
Wang, Jianxing
Teng, Wei
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Key Lab Condit Monitoring & Control Power Plant E, Minist Educ, Beijing 102206, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
Teng, Wei
Xu, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Informat Sci & Technol Univ, Beijing Key Lab Measurement & Control Mech & Elec, Beijing 100192, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
Xu, Xiaoli
Ma, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Informat Sci & Technol Univ, Beijing Key Lab Measurement & Control Mech & Elec, Beijing 100192, Peoples R ChinaChinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China