Phylogeny Numbers of Generalized Hamming Graphs

被引:3
|
作者
Qian, Chengyang [1 ,2 ]
Wu, Yaokun [1 ,2 ]
Xiong, Yanzhen [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
关键词
Competition number; Edge clique cover; Percolation number; COMPETITION NUMBERS;
D O I
10.1007/s40840-022-01338-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer n, we use [n] for the set {1,..., n}. For any integers a(1),..., a(n) >= 2 and k >= 1, the generalized Hamming graph H-a1,....,an(k) is the graph with vertex set [a1] x center dot center dot center dot x [an] in which two different vertices are adjacent if and only if their Hamming distance is at most k. We determine the phylogeny number of 1 a(1),...,a(n) and that of H-a1,....,an(n=1) we also calculate the phylogeny number ofHn-1 a(1),= ,an when a(1) = center dot center dot center dot = an is sufficiently large. In the course of establishing a lower bound estimate of phylogeny numbers, we make use of our former result on the rank of the rainbow inclusion matrices; our upper bound estimate comes from a concrete construction of a minimum size percolating set in a special bootstrap process.
引用
收藏
页码:2733 / 2744
页数:12
相关论文
共 50 条
  • [31] Subdivided graphs as isometric subgraphs of Hamming graphs
    Beaudou, L.
    Gravier, S.
    Meslem, K.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1062 - 1070
  • [32] Eigenspaces of Hamming graphs and unitary Cayley graphs
    Sander, Torsten
    ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (01) : 13 - 19
  • [33] GENERALIZED HAMMING WINDOW
    WEBSTER, RJ
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1978, 26 (03): : 269 - 270
  • [34] Generalized Hamming Distance
    Abraham Bookstein
    Vladimir A. Kulyukin
    Timo Raita
    Information Retrieval, 2002, 5 : 353 - 375
  • [35] Generalized Hamming distance
    Bookstein, A
    Kulyukin, VA
    Raita, T
    INFORMATION RETRIEVAL, 2002, 5 (04): : 353 - 375
  • [36] Generalized Hamming weights of projective Reed-Muller-type codes over graphs
    Martinez-Bernal, Jose
    Valencia-Bucio, Miguel A.
    Villarreal, Rafael H.
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [37] Hamming graphs in Nomura algebras
    Chan, Ada
    Munemasa, Akihiro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 330 - 341
  • [38] Spectral characterization of the Hamming graphs
    Bang, Sejeong
    van Dam, Edwin R.
    Koolen, Jack H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2678 - 2686
  • [39] Hamming Graphs and Permutation Codes
    Barta, Janos
    Montemanni, Roberto
    2017 FOURTH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI), 2017, : 154 - 158
  • [40] Combinatorial PDEs on Hamming graphs
    Barletta, E
    Dragomir, S
    DISCRETE MATHEMATICS, 2002, 254 (1-3) : 1 - 18