Features of austenitic steels' microstructure following plastic deformation

被引:12
|
作者
Gershteyn, G. [1 ]
Shevchenko, N. [2 ]
Diekamp, M. [1 ]
Brosius, A. [3 ]
Schaper, M. [1 ]
Bach, Fr-W. [1 ]
机构
[1] Univ Hannover, Inst Mat Sci, D-30823 Garbsen, Germany
[2] Inst Strength Phys & Mat Sci SB RAS, Tomsk, Russia
[3] Tech Univ Dortmund, Inst Forming Technol & Lightweight Construct, Dortmund, Germany
关键词
austenitic steel; cold rolling; twins; shear bands; TEM; austenitischer Stahl; Kaltwalzen; Zwilling; Scherband; STAINLESS-STEEL; SHEAR BANDS; TEXTURE;
D O I
10.1002/mawe.201200853
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The carried out transmission electron microscopic (TEM) analysis of steels 316L and TWIP, has shown that important mechanisms of plastic deformation are mechanical twinning, shear band formation and deformation martensitic transformations. Mechanical twinning is a characteristic feature of a plastic deformation at epsilon approximate to(20-50)% deformation degrees. At epsilon = (20-70)% the basic contribution in plastic deformation of a material brings shear band formation. The contribution deformation martensitic transformations into plastic deformation is defined by level of phase instability of steels.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 50 条
  • [21] Plastic deformation processes accompanying stress corrosion crack propagation in irradiated austenitic steels
    Gussev, M.N.
    Was, G.S.
    Busby, J.T.
    Leonard, K.J.
    Minerals, Metals and Materials Series, 2019, : 2289 - 2300
  • [22] PIPE DIAMETER AND PIPE THICKNESS EFFECT ON THE PLASTIC DEFORMATION BEHAVIOUR OF AUSTENITIC STAINLESS STEELS
    Di Schino, A.
    METALURGIJA, 2019, 58 (3-4): : 196 - 198
  • [23] Plastic Deformation Processes Accompanying Stress Corrosion Crack Propagation in Irradiated Austenitic Steels
    Gussev, M. N.
    Was, G. S.
    Busby, J. T.
    Leonard, K. J.
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL DEGRADATION OF MATERIALS IN NUCLEAR POWER SYSTEMS - WATER REACTORS, VOL 2, 2018, : 1073 - 1084
  • [24] Martensite and deformation twinning in austenitic steels
    Tsakiris, V
    Edmonds, DV
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 273 : 430 - 436
  • [25] Effect of Carbon and Nitrogen on Work Hardening and Deformation Microstructure in Stable Austenitic Stainless Steels
    Yoshitake, Mutsumi
    Tsuchiyama, Toshihiro
    Takaki, Setsuo
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2012, 98 (06): : 223 - 228
  • [26] Microstructure of austenitic stainless steels of various phase stabilities after cyclic and tensile deformation
    Weidner, Anja
    Glage, Alexander
    Martin, Stefan
    Man, Jiri
    Klemm, Volker
    Martin, Ulrich
    Polak, Jaroslav
    Rafaja, David
    Biermann, Horst
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2011, 102 (11) : 1374 - 1377
  • [28] Phase reversion induced nanograined austenitic stainless steels: microstructure, reversion and deformation mechanisms
    Misra, R. D. K.
    Shah, J. S.
    Mali, S.
    Surya, P. K. C. Venkata
    Somani, M. C.
    Karjalainen, L. P.
    MATERIALS SCIENCE AND TECHNOLOGY, 2013, 29 (10) : 1185 - 1192
  • [29] Size and Strain Analysis of Deformation Microstructure in High-Nitrogen Austenitic Stainless Steels
    Lee, Tae-Ho
    Shin, Eunjoo
    Ha, Heon-Young
    Oh, Chang-Seok
    Kim, Sung-Joon
    MECHANICAL STRESS EVALUATION BY NEUTRONS AND SYNCHROTRON RADIATION, 2010, 652 : 133 - +
  • [30] Effect of Nb, Ti and cold deformation on microstructure and mechanical properties of austenitic stainless steels
    Farahat, Ahmed Ismail Zaky
    El-Bitar, T. A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (16-17): : 3662 - 3669