Features of austenitic steels' microstructure following plastic deformation

被引:12
|
作者
Gershteyn, G. [1 ]
Shevchenko, N. [2 ]
Diekamp, M. [1 ]
Brosius, A. [3 ]
Schaper, M. [1 ]
Bach, Fr-W. [1 ]
机构
[1] Univ Hannover, Inst Mat Sci, D-30823 Garbsen, Germany
[2] Inst Strength Phys & Mat Sci SB RAS, Tomsk, Russia
[3] Tech Univ Dortmund, Inst Forming Technol & Lightweight Construct, Dortmund, Germany
关键词
austenitic steel; cold rolling; twins; shear bands; TEM; austenitischer Stahl; Kaltwalzen; Zwilling; Scherband; STAINLESS-STEEL; SHEAR BANDS; TEXTURE;
D O I
10.1002/mawe.201200853
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The carried out transmission electron microscopic (TEM) analysis of steels 316L and TWIP, has shown that important mechanisms of plastic deformation are mechanical twinning, shear band formation and deformation martensitic transformations. Mechanical twinning is a characteristic feature of a plastic deformation at epsilon approximate to(20-50)% deformation degrees. At epsilon = (20-70)% the basic contribution in plastic deformation of a material brings shear band formation. The contribution deformation martensitic transformations into plastic deformation is defined by level of phase instability of steels.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 50 条
  • [1] Microstructure of austenitic and ferritic steels produced by severe plastic deformation and subsequent annealing
    Vorhauer, A
    Kleber, S
    Pippan, R
    ULTRAFINE GRAINED MATERIALS III, 2004, : 629 - 634
  • [2] Microstructure and magnetism of austenitic steels in relation to chemical composition, severe plastic deformation, and solution annealing
    Hrabovska, Kamila
    Zivotsky, Ondrej
    Vanova, Petra
    Jiraskova, Yvonna
    Gembalova, Lucie
    Hilser, Ondrej
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [3] The role of irradiated microstructure in the localized deformation of austenitic stainless steels
    Jiao, Z.
    Was, G. S.
    JOURNAL OF NUCLEAR MATERIALS, 2010, 407 (01) : 34 - 43
  • [4] Effect of plastic deformation on the carbon internal friction peak in austenitic steels
    Blanter, M.S.
    Golovin, I.S.
    De Batist, R.
    Golovin, S.A.
    Physica Status Solidi (A) Applied Research, 2000, 178 (02): : 621 - 632
  • [5] COLD PLASTIC-DEFORMATION OF CHROMIUM MANGANESE AUSTENITIC METASTABLE STEELS
    MALINOV, LS
    KONOPLYASHKO, VI
    METAL SCIENCE AND HEAT TREATMENT, 1984, 26 (1-2) : 49 - 51
  • [6] Effect of plastic deformation on the carbon internal friction peak in austenitic steels
    Blanter, MS
    Golovin, IS
    De Batist, R
    Golovin, SA
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2000, 178 (02): : 621 - 632
  • [7] Cyclic plastic deformation-induced martensitic transformation in austenitic steels
    Kaleta, J
    Zietek, G
    ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 275 - 281
  • [8] APPARATUS FOR HARDENING AUSTENITIC STEELS BY PLASTIC-DEFORMATION AT -196 DEGREESC
    GORDEEV, YP
    RITTENBERG, GS
    NABOKOV, AN
    TSAREV, VB
    METAL SCIENCE AND HEAT TREATMENT, 1974, 16 (7-8) : 591 - 593
  • [9] Change of magnetic properties in austenitic stainless steels due to plastic deformation
    Orsulova, Tatiana
    Palcek, Peter
    Roszak, Marek
    Uhricik, Milan
    Smetana, Milan
    Kudelcik, Jozef
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 1689 - 1694
  • [10] Microstructure and Deformation Behavior of Thermally Aged Cast Austenitic Stainless Steels
    Chen, Y.
    Xu, C.
    Zhang, X.
    Chen, W. -Y.
    Park, J. -S.
    Almer, J.
    Li, M.
    Li, Z.
    Yang, Y.
    Rao, A. S.
    Alexandreanu, B.
    Natesan, K.
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL DEGRADATION OF MATERIALS IN NUCLEAR POWER SYSTEMS - WATER REACTORS, VOL 2, 2018, : 625 - 641