Learning Personalized Itemset Mapping for Cross-Domain Recommendation

被引:0
|
作者
Zhang, Yinan [1 ,2 ]
Liu, Yong [1 ,3 ]
Han, Peng [4 ,7 ]
Miao, Chunyan [2 ]
Cui, Lizhen [5 ,6 ]
Li, Baoli [7 ]
Tang, Haihong [7 ]
机构
[1] Alibaba NTU Singapore Joint Res Inst, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] Joint NTU UBC Res Ctr Excellence Act Living Elder, Singapore, Singapore
[4] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[5] Shandong Univ, Sch Software, Jinan, Peoples R China
[6] Shandong Univ, Joint SDU NTU Ctr Artificial Intelligence Res C F, Jinan, Peoples R China
[7] Alibaba Grp, Hangzhou, Peoples R China
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommendation methods usually transfer knowledge across different domains implicitly, by sharing model parameters or learning parameter mappings in the latent space. Differing from previous studies, this work focuses on learning the explicit mapping between a user's behaviors (i.e., interaction itemsets) in different domains during the same temporal period. In this paper, we propose a novel deep cross-domain recommendation model, called Cycle Generation Networks (CGN). Specifically, CGN employs two generators to construct the dual-direction personalized itemset mapping between a user's behaviors in two different domains over time. The generators are learned by optimizing the distance between the generated itemset and the real interacted itemset, as well as the cycle consistency loss defined based on the dual-direction generation procedure. We have performed extensive experiments on real datasets to demonstrate the effectiveness of the proposed model, comparing with existing single-domain and cross-domain recommendation methods.
引用
收藏
页码:2561 / 2567
页数:7
相关论文
共 50 条
  • [31] Attentive-Feature Transfer based on Mapping for Cross-domain Recommendation
    Liu, Zhen
    Tian, Jingyu
    Zhao, Lingxi
    Zhang, Yanling
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 151 - 158
  • [32] Cross-Domain Recommendation with Multiple Sources
    Zhang, Qian
    Lu, Jie
    Zhang, Guangquan
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [33] Contrastive Cross-Domain Sequential Recommendation
    Cao, Jiangxia
    Cong, Xin
    Sheng, Jiawei
    Liu, Tingwen
    Wang, Bin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 138 - 147
  • [34] Deep Cross-Domain Fashion Recommendation
    Jaradat, Shatha
    PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 407 - 410
  • [35] Neural Attentive Cross-Domain Recommendation
    Rafailidis, Dimitrios
    Crestani, Fabio
    PROCEEDINGS OF THE 2019 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'19), 2019, : 164 - 171
  • [36] Cross-domain recommendation with user personality
    Wang, Hanfei
    Zuo, Yuan
    Li, Hong
    Wu, Junjie
    KNOWLEDGE-BASED SYSTEMS, 2021, 213 (213)
  • [37] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589
  • [38] Cross-Domain Recommendation Method in Tourism
    QingQi
    JianCao
    Tan, Yudong
    Xiao, Quanwu
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 106 - 112
  • [39] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [40] Cross-domain personalized image captioning
    Cuirong Long
    Xiaoshan Yang
    Changsheng Xu
    Multimedia Tools and Applications, 2020, 79 : 33333 - 33348