Iterative Cross-Scanner Registration for Whole Slide Images

被引:2
|
作者
Theelke, Luisa [1 ]
Wilm, Frauke [1 ]
Marzahl, Christian [1 ]
Bertram, Christof A. [2 ]
Klopfleisch, Robert [3 ]
Maier, Andreas [1 ]
Aubreville, Marc [4 ]
Breininger, Katharina [5 ]
机构
[1] Friedrich Alexander Univ, Pattern Recognit Lab, Comp Sci, Erlangen, Germany
[2] Univ Vet Med, Inst Pathol, Vienna, Austria
[3] Free Univ Berlin, Inst Vet Pathol, Berlin, Germany
[4] TH Ingolstadt, Ingolstadt, Germany
[5] Friedrich Alexander Univ, Dept Artif Intelligence Biomed Engn, Erlangen, Germany
关键词
D O I
10.1109/ICCVW54120.2021.00071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The successful registration of digitized microscopic images is required for many applications in digital pathology. In particular, the registration of specimens scanned by different slide scanning systems may be beneficial to transfer expert annotations from one image domain to another and thereby reduce labeling effort. We present an iterative approach to register microscopic specimens digitized with multiple scanning systems, aiming to compute an optimal global transformation for the images at highest resolution. For this purpose, an initial registration based on a down-scaled version of the images is followed by a patch-based iterative update scheme. We make use of the hierarchical structure of digitized whole slide images to gradually approximate the optimal transformation. By using kernel density estimation to weight local transformation estimates, the influence of registration errors can be further mitigated. We validate our method on five histologic and five cytologic samples, each scanned with four different scanning systems. Furthermore, we perform first experiments on samples stained with different stain combinations. Our experiments demonstrate the potential of the proposed method for a variety of datasets and application fields.
引用
收藏
页码:582 / 590
页数:9
相关论文
共 50 条
  • [21] A fast method for approximate registration of whole-slide images of serial sections using local curvature
    Trahearn, Nicholas
    Epstein, David
    Snead, David
    Cree, Ian
    Rajpoot, Nasir
    [J]. MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041
  • [22] Whole Slide Image Registration for the Study of Tumor Heterogeneity
    Solorzano, Leslie
    Almeida, Gabriela M.
    Mesquita, Barbara
    Martins, Diana
    Oliveira, Carla
    Wahlby, Carolina
    [J]. COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 95 - 102
  • [23] Cross-Scanner Harmonization of Neuromelanin-Sensitive MRI for Multi-Site Studies
    Wengler, Kenneth
    Cassidy, Clifford
    van der Pluijm, Marieke
    Weinstein, Jodi
    Abi-Dargham, Anissa
    van de Giessen, Elsmarieke
    Horga, Guillermo
    [J]. BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : S356 - S356
  • [24] Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT
    Sun, Hao
    Du, Yu
    Lin, Ching-Ni
    Jiang, Han
    Huang, Wenbo
    Chiu, Pai-Yi
    Hung, Guang-Uei
    Lu, Lijun
    Mok, Greta S. P.
    [J]. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (06) : 664 - 676
  • [25] Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms
    Tax, Chantal M. W.
    Grussu, Francesco
    Kaden, Enrico
    Ning, Lipeng
    Rudrapatna, Umesh
    Evans, C. John
    St-Jean, Samuel
    Leemans, Alexander
    Koppers, Simon
    Merhof, Dorit
    Ghosh, Aurobrata
    Tanno, Ryutaro
    Alexander, Daniel C.
    Zappala, Stefano
    Charron, Cyril
    Kusmia, Slawomir
    Linden, David E. J.
    Jones, Derek K.
    Veraart, Jelle
    [J]. NEUROIMAGE, 2019, 195 : 285 - 299
  • [26] Simple Non-Iterative Clustering and CNNs for Coarse Segmentation of Breast Cancer Whole Slide Images
    Albusayli, Rawan
    Graham, Dinny
    Pathmanathan, Nirmala
    Shaban, Muhammad
    Minhas, Fayyaz
    Armes, Jane E.
    Rajpoot, Nasir M.
    [J]. MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY, 2021, 11603
  • [27] Tumor Proliferation Assessment of Whole Slide Images
    Rousson, Mikael
    Hedlund, Martin
    Andersson, Mats
    Jacobsson, Ludwig
    Lathen, Gunnar
    Norell, Bjorn
    Jimenez-del-Toro, Oscar
    Mueller, Henning
    Atzori, Manfredo
    [J]. MEDICAL IMAGING 2018: DIGITAL PATHOLOGY, 2018, 10581
  • [28] Analysis of Whole Slide Images of Equine Tendinopathy
    Toutain, M.
    Lezoray, O.
    Audigie, F.
    Busoni, V.
    Rossi, G.
    Parillo, F.
    Elmoataz, A.
    [J]. IMAGE ANALYSIS AND RECOGNITION, PT II, 2012, 7325 : 440 - 447
  • [29] Detection of tissue folds in whole slide images
    Bautista, Pinky A.
    Yagi, Yukako
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3669 - 3672
  • [30] Whole Slide Images Stitching for Osteosarcoma Detection
    Armaselu, Bogdan
    Arunachalam, Harish Babu
    Daescu, Ovidiu
    Bach, John-Paul
    Cederberg, Kevin
    Rakheja, Dinesh
    Sengupta, Anita
    Skapek, Stephen
    Leavey, Patrick
    [J]. 2015 IEEE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2015,