Bayesian Nonparametric Modelling of the Return Distribution with Stochastic Volatility

被引:39
|
作者
Delatola, Eleni-Ioanna [1 ]
Griffin, Jim E. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Dirichlet process; Asset Return; Stock Index; Off-set mixture representation; Mixture model; Centred representation; MONTE-CARLO METHODS; LIKELIHOOD INFERENCE; DENSITY-ESTIMATION; MIXTURES; LEVERAGE; TAILS;
D O I
10.1214/11-BA632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a method for Bayesian nonparametric analysis of the return distribution in a stochastic volatility model. The distribution of the logarithm of the squared return is flexibly modelled using an infinite mixture of Normal distributions. This allows efficient Markov chain Monte Carlo methods to be developed. Links between the return distribution and the distribution of the logarithm of the squared returns are discussed. The method is applied to simulated data, one asset return series and one stock index return series. We find that estimates of volatility using the model can differ dramatically from those using a Normal return distribution if there is evidence of a heavy-tailed return distribution.
引用
收藏
页码:901 / 926
页数:26
相关论文
共 50 条
  • [31] American options with stochastic dividends and volatility:: A nonparametric investigation
    Broadie, M
    Detemple, J
    Ghysels, E
    Torrés, O
    [J]. JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) : 53 - 92
  • [33] American Options with Stochastic Dividends and Volatility: A Nonparametric Investigation
    Broadie, Mark
    Detemple, Jerome
    Ghysels, Eric
    Torres, Olivier
    [J]. JOURNAL OF FINANCE, 1997, 52 (03): : 1214 - 1214
  • [34] Return volatility and trading volume: An information flow interpretation of stochastic volatility
    Andersen, TG
    [J]. JOURNAL OF FINANCE, 1996, 51 (01): : 169 - 204
  • [35] The distribution of realized stock return volatility
    Andersen, TG
    Bollerslev, T
    Diebold, FX
    Ebens, H
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 2001, 61 (01) : 43 - 76
  • [36] Combinatorial Stochastic Processes and Nonparametric Bayesian Modeling
    Jordan, Michael I.
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 139 - 139
  • [37] Innovation, growth and aggregate volatility from a Bayesian nonparametric perspective
    Lijoi, Antonio
    Muliere, Pietro
    Prunster, Igor
    Taddei, Filippo
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 2179 - 2203
  • [38] Long memory stochastic volatility: A Bayesian approach
    Chan, NH
    Petris, G
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (5-6) : 1367 - 1378
  • [39] A Bayesian Semiparametric Realized Stochastic Volatility Model
    Liu, Jia
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (12)
  • [40] Bayesian semiparametric multivariate stochastic volatility with application
    Zaharieva, Martina Danielova
    Trede, Mark
    Wilfling, Bernd
    [J]. ECONOMETRIC REVIEWS, 2020, 39 (09) : 947 - 970