Bayesian Nonparametric Modelling of the Return Distribution with Stochastic Volatility

被引:39
|
作者
Delatola, Eleni-Ioanna [1 ]
Griffin, Jim E. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Dirichlet process; Asset Return; Stock Index; Off-set mixture representation; Mixture model; Centred representation; MONTE-CARLO METHODS; LIKELIHOOD INFERENCE; DENSITY-ESTIMATION; MIXTURES; LEVERAGE; TAILS;
D O I
10.1214/11-BA632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a method for Bayesian nonparametric analysis of the return distribution in a stochastic volatility model. The distribution of the logarithm of the squared return is flexibly modelled using an infinite mixture of Normal distributions. This allows efficient Markov chain Monte Carlo methods to be developed. Links between the return distribution and the distribution of the logarithm of the squared returns are discussed. The method is applied to simulated data, one asset return series and one stock index return series. We find that estimates of volatility using the model can differ dramatically from those using a Normal return distribution if there is evidence of a heavy-tailed return distribution.
引用
收藏
页码:901 / 926
页数:26
相关论文
共 50 条