Parallel iterative refinement in polynomial eigenvalue problems

被引:1
|
作者
Campos, Carmen [1 ]
Roman, Jose E. [1 ]
机构
[1] Univ Politecn Valencia, Dept Sistemes Informat & Comp, Cami Vera S-N, E-46022 Valencia, Spain
关键词
polynomial eigenvalue problems; iterative refinement; invariant pairs; parallel computing; BLOCK ELIMINATION; SYSTEMS;
D O I
10.1002/nla.2052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Methods for the polynomial eigenvalue problem sometimes need to be followed by an iterative refinement process to improve the accuracy of the computed solutions. This can be accomplished by means of a Newton iteration tailored to matrix polynomials. The computational cost of this step is usually higher than the cost of computing the initial approximations, due to the need of solving multiple linear systems of equations with a bordered coefficient matrix. An effective parallelization is thus important, and we propose different approaches for the message-passing scenario. Some schemes use a subcommunicator strategy in order to improve the scalability whenever direct linear solvers are used. We show performance results for the various alternatives implemented in the context of SLEPc, the Scalable Library for Eigenvalue Problem Computations. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:730 / 745
页数:16
相关论文
共 50 条
  • [31] Parallel algorithms for dense eigenvalue problems
    Sun, XB
    WORKSHOP ON HIGH PERFORMANCE COMPUTING AND GIGABIT LOCAL AREA NETWORKS, 1997, 226 : 202 - 212
  • [32] STRUCTURED EIGENVALUE CONDITION NUMBER AND BACKWARD ERROR OF A CLASS OF POLYNOMIAL EIGENVALUE PROBLEMS
    Bora, Shreemayee
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 900 - 917
  • [33] Analytical solutions to some generalized and polynomial eigenvalue problems
    Deng, Quanling
    SPECIAL MATRICES, 2021, 9 (01): : 240 - 256
  • [34] Structured backward error for palindromic polynomial eigenvalue problems
    Li, Ren-Cang
    Lin, Wen-Wei
    Wang, Chern-Shuh
    NUMERISCHE MATHEMATIK, 2010, 116 (01) : 95 - 122
  • [35] Polynomial Eigenvalue Solutions to Minimal Problems in Computer Vision
    Kukelova, Zuzana
    Bujnak, Martin
    Pajdla, Tomas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1381 - 1393
  • [36] ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS
    Rahman, Sharif
    Yadav, Vaibhav
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2011, 1 (02) : 163 - 187
  • [37] Structured backward error for palindromic polynomial eigenvalue problems
    Ren-Cang Li
    Wen-Wei Lin
    Chern-Shuh Wang
    Numerische Mathematik, 2010, 116 : 95 - 122
  • [38] A Comparison of Iterative and DFT-Based Polynomial Matrix Eigenvalue Decompositions
    Coutts, Fraser K.
    Thompson, Keith
    Proudler, Ian K.
    Weiss, Stephan
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [39] Julia sets in iterative KAM methods for eigenvalue problems
    Govin, M
    Jauslin, HR
    Cibils, M
    CHAOS SOLITONS & FRACTALS, 1998, 9 (11) : 1835 - 1846
  • [40] Iterative algorithms for nonlinear ordinary differential eigenvalue problems
    Sun, W
    Liu, KM
    APPLIED NUMERICAL MATHEMATICS, 2001, 38 (03) : 361 - 376