Parallel iterative refinement in polynomial eigenvalue problems

被引:1
|
作者
Campos, Carmen [1 ]
Roman, Jose E. [1 ]
机构
[1] Univ Politecn Valencia, Dept Sistemes Informat & Comp, Cami Vera S-N, E-46022 Valencia, Spain
关键词
polynomial eigenvalue problems; iterative refinement; invariant pairs; parallel computing; BLOCK ELIMINATION; SYSTEMS;
D O I
10.1002/nla.2052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Methods for the polynomial eigenvalue problem sometimes need to be followed by an iterative refinement process to improve the accuracy of the computed solutions. This can be accomplished by means of a Newton iteration tailored to matrix polynomials. The computational cost of this step is usually higher than the cost of computing the initial approximations, due to the need of solving multiple linear systems of equations with a bordered coefficient matrix. An effective parallelization is thus important, and we propose different approaches for the message-passing scenario. Some schemes use a subcommunicator strategy in order to improve the scalability whenever direct linear solvers are used. We show performance results for the various alternatives implemented in the context of SLEPc, the Scalable Library for Eigenvalue Problem Computations. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:730 / 745
页数:16
相关论文
共 50 条
  • [1] On Mixed Precision Iterative Refinement for Eigenvalue Problems
    Prikopa, Karl E.
    Gansterer, Wilfried N.
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2647 - 2650
  • [2] Iterative refinement for polynomial zeros
    Zhang, H
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-IV, PROCEEDINGS, 1998, : 402 - 406
  • [3] Iterative refinement for symmetric eigenvalue decomposition
    Takeshi Ogita
    Kensuke Aishima
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 1007 - 1035
  • [4] Iterative refinement for symmetric eigenvalue decomposition
    Ogita, Takeshi
    Aishima, Kensuke
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1007 - 1035
  • [5] Polynomial Optimization Problems are Eigenvalue Problems
    Dreesen, Philippe
    De Moor, Bart
    MODEL-BASED CONTROL: BRIDGING RIGOROUS THEORY AND ADVANCED TECHNOLOGY, 2009, : 49 - 68
  • [6] Newton's method in floating point arithmetic and iterative refinement of generalized eigenvalue problems
    Tisseur, F
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) : 1038 - 1057
  • [7] A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems
    Huang, Tsung-Ming
    Hwang, Feng-Nan
    Lai, Sheng-Hong
    Wang, Weichung
    Wei, Zih-Hao
    COMPUTERS & FLUIDS, 2011, 45 (01) : 207 - 214
  • [8] Iterative approach for the eigenvalue problems
    J DATTA
    P K BERA
    Pramana, 2011, 76 : 47 - 66
  • [9] Iterative approach for the eigenvalue problems
    Datta, J.
    Bera, P. K.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 76 (01): : 47 - 66
  • [10] Spectral approximation for polynomial eigenvalue problems
    Lu, Zhongjie
    van der Vegt, J. J. W.
    Xu, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (05) : 1184 - 1197