Defect correction method for time-dependent viscoelastic fluid flow

被引:14
|
作者
Zhang, Yunzhang [1 ]
Hou, Yanren [1 ]
Mu, Baoying [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
viscoelastic fluid flow; finite element; time dependent; defect correction method; discontinuous Galerkin; error estimate; Weissenberg number; NAVIER-STOKES EQUATIONS; SCHEME; FEM;
D O I
10.1080/00207160.2010.521549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A defect correction method for solving the time-dependent viscoelastic fluid flow, aiming at high Weissenberg numbers, is presented. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the residual is considered in the correction step. We show the convergence of the method and derive an error estimate. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method.
引用
收藏
页码:1546 / 1563
页数:18
相关论文
共 50 条
  • [31] Three Control Methods for Time-Dependent Fluid Flow
    Michael Hinze
    Karl Kunisch
    Flow, Turbulence and Combustion, 2000, 65 : 273 - 298
  • [32] DEFORMATION OF A DROP IN A GENERAL TIME-DEPENDENT FLUID FLOW
    COX, RG
    JOURNAL OF FLUID MECHANICS, 1969, 37 : 601 - &
  • [33] Unconditional error estimates for time dependent viscoelastic fluid flow
    Zheng, Haibiao
    Yu, Jiaping
    Shan, Li
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 1 - 17
  • [34] Time-dependent analysis of electroosmotic fluid flow in a microchannel
    Narla, V. K.
    Tripathi, Dharmendra
    Sekhar, G. P. Raja
    JOURNAL OF ENGINEERING MATHEMATICS, 2019, 114 (01) : 177 - 196
  • [35] Time-dependent algorithms for viscoelastic flow: Finite element/volume schemes
    Webster, MF
    Tamaddon-Jahromi, HR
    Aboubacar, M
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (02) : 272 - 296
  • [36] Time-Dependent Second-Order Viscoelastic Fluid Flow on Rotating Cone with Heat Generation and Chemical Reaction
    Saleem, Salman
    Nadeem, Sohail
    Awais, Muhammad
    JOURNAL OF AEROSPACE ENGINEERING, 2016, 29 (04)
  • [37] TIME-DEPENDENT BEHAVIOR OF VISCOELASTIC SUSPENSIONS
    UMEYA, K
    OTSUBO, Y
    JOURNAL OF RHEOLOGY, 1980, 24 (02) : 239 - 251
  • [38] TIME-DEPENDENT BEHAVIOR OF VISCOELASTIC SUSPENSIONS
    UMEYA, K
    OTSUBO, Y
    JOURNAL OF RHEOLOGY, 1980, 24 (03) : 336 - 336
  • [39] Topology optimization of viscoelastic structures using a time-dependent adjoint method
    James, Kai A.
    Waisman, Haim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 166 - 187
  • [40] Transition to a time-dependent state of fluid flow in the wake of a sphere
    Gumowski, K.
    Miedzik, J.
    Goujon-Durand, S.
    Jenffer, P.
    Wesfreid, J. E.
    PHYSICAL REVIEW E, 2008, 77 (05):