On the pinned distances problem in positive characteristic

被引:20
|
作者
Murphy, Brendan [1 ]
Petridis, Giorgis [2 ]
Pham, Thang [3 ]
Rudnev, Misha [1 ]
Stevens, Sophie [4 ]
机构
[1] Univ Bristol, Dept Math, Bristol, Avon, England
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
[3] Vietnam Natl Univ, Univ Sci, Hanoi, Vietnam
[4] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
基金
美国国家科学基金会; 瑞士国家科学基金会; 奥地利科学基金会;
关键词
DISTINCT DISTANCES; DIMENSIONS; PRODUCTS; ENERGY;
D O I
10.1112/jlms.12524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Erdos-Falconer distance problem for a set A subset of F2$A\subset \mathbb {F}<^>2$, where F$\mathbb {F}$ is a field of positive characteristic p$p$. If F=Fp$\mathbb {F}=\mathbb {F}_p$ and the cardinality |A|$|A|$ exceeds p5/4$p<^>{5/4}$, we prove that A$A$ determines an asymptotically full proportion of the feasible p$p$ distances. For small sets A$A$, namely when |A|<= p4/3$|A|\leqslant p<^>{4/3}$ over any F$\mathbb {F}$, we prove that either A$A$ determines >>|A|2/3$\gg |A|<^>{2/3}$ distances, or A$A$ lies on an isotropic line. For both large and small sets, the results proved are in fact for pinned distances.
引用
收藏
页码:469 / 499
页数:31
相关论文
共 50 条