Bayesian latent class analysis when the reference test is imperfect

被引:51
|
作者
Cheung, A. [1 ,2 ]
Dufour, S. [3 ]
Jones, G. [4 ]
Kostoulas, P. [5 ]
Stevenson, M. A. [1 ,2 ]
Singanallur, N. B. [2 ,6 ]
Firestone, S. M. [1 ,2 ]
机构
[1] Univ Melbourne, Fac Vet & Agr Sci, Sch Vet Sci, 142 Royal Parade, Parkville, Vic 3010, Australia
[2] CSIRO, OIE Collaborating Ctr Diagnost Test Validat Asia, 5 Portarlington Rd, East Geelong, Vic 3219, Australia
[3] Univ Montreal, Fac Vet Med, 3200 Rue Sicotte, St Hyacinthe, PQ J2S 2M2, Canada
[4] Massey Univ, Sch Fundamental Sci, PN461 Private Bag 11222, Palmerston North 4442, New Zealand
[5] Univ Thessaly, Sch Hlth Sci, Trikalon 224, Kardhitsa 43100, Greece
[6] CSIRO Hlth & Biosecur, Australian Ctr Dis Preparedness, 5 Portarlington Rd, East Geelong, Vic 3219, Australia
关键词
Bayesian latent class analysis; Diagnostic test evaluation; Gold standard; Imperfect test; Prevalence; Sensitivity; Specificity; 3 SEROLOGICAL TESTS; MODELING CONDITIONAL DEPENDENCE; OPERATING CHARACTERISTIC CURVES; DIAGNOSTIC-TEST ACCURACY; REAL-TIME PCR; PARATUBERCULOSIS INFECTION; DISEASE PREVALENCE; REGRESSION-MODELS; DAIRY-CATTLE; RISK-FACTORS;
D O I
10.20506/rst.40.1.3224
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Latent class analysis (LCA) has allowed epidemiologists to overcome the practical constraints faced by traditional diagnostic test evaluation methods, which require both a gold standard diagnostic test and ample numbers of appropriate reference samples. Over the past four decades, LCA methods have expanded to allow epidemiologists to evaluate diagnostic tests and estimate true prevalence using imperfect tests over a variety of complex data structures and scenarios, including during the emergence of novel infectious diseases. The objective of this review is to provide an overview of recent developments in LCA methods, as well as a practical guide to applying Bayesian LCA (BLCA) to the evaluation of diagnostic tests. Before conducting a BLCA, the suitability of BLCA for the pathogen of interest, the availability of appropriate samples, the number of diagnostic tests, and the structure of the data should be carefully considered. While formulating the model, the model's structure and specification of informative priors will affect the likelihood that useful inferences can be drawn. With the growing need for advanced analytical methods to evaluate diagnostic tests for newly emerging diseases, LCA is a promising field of research for both the veterinary and medical disciplines.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 50 条
  • [21] Bayesian latent class models to estimate diagnostic test accuracies of COVID-19 tests
    Hartnack, Sonja
    Eusebi, Paolo
    Kostoulas, Polychronis
    JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (02) : 639 - 640
  • [22] Avoiding Boundary Estimates in Latent Class Analysis by Bayesian Posterior Mode Estimation
    Francisca Galindo Garre
    Jeroen K. Vermunt
    Behaviormetrika, 2006, 33 (1) : 43 - 59
  • [23] The accuracy of tuberculous meningitis diagnostic tests using Bayesian latent class analysis
    Huy Ngoc Le
    Sriplung, Hutcha
    Chongsuvivatwong, Virasakdi
    Nhung Viet Nguyen
    Tri Huu Nguyen
    JOURNAL OF INFECTION IN DEVELOPING COUNTRIES, 2020, 14 (05): : 479 - 487
  • [25] Social Structure in new Russia: Evidence from Bayesian Latent Class Analysis
    Anikin, Vasiliy A.
    JOURNAL OF ECONOMIC SOCIOLOGY-EKONOMICHESKAYA SOTSIOLOGIYA, 2022, 23 (03): : 42 - 91
  • [26] A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis
    Dong, Trinh Huu Khanh
    Donovan, Joseph
    Ngoc, Nghiem My
    Thu, Do Dang Anh
    Nghia, Ho Dang Trung
    Oanh, Pham Kieu Nguyet
    Phu, Nguyen Hoan
    Hang, Vu Thi Ty
    Chau, Nguyen Van Vinh
    Thuong, Nguyen Thuy Thuong
    Tan, Le Van
    Thwaites, Guy E.
    Geskus, Ronald B.
    BMC INFECTIOUS DISEASES, 2024, 24 (01)
  • [27] Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler
    White, Arthur
    Wyse, Jason
    Murphy, Thomas Brendan
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 511 - 527
  • [28] Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler
    Arthur White
    Jason Wyse
    Thomas Brendan Murphy
    Statistics and Computing, 2016, 26 : 511 - 527
  • [29] A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis
    Trinh Huu Khanh Dong
    Joseph Donovan
    Nghiem My Ngoc
    Do Dang Anh Thu
    Ho Dang Trung Nghia
    Pham Kieu Nguyet Oanh
    Nguyen Hoan Phu
    Vu Thi Ty Hang
    Nguyen Van Vinh Chau
    Nguyen Thuy Thuong Thuong
    Le Van Tan
    Guy E. Thwaites
    Ronald B. Geskus
    BMC Infectious Diseases, 24
  • [30] Simultaneous alleviation of verification and reference standard biases in a community-based tuberculosis screening study using Bayesian latent class analysis
    Keter, Alfred Kipyegon
    Vanobberghen, Fiona
    Lynen, Lutgarde
    Van Heerden, Alastair
    Fehr, Jana
    Olivier, Stephen
    Wong, Emily B.
    Glass, Tracy R.
    Reither, Klaus
    Goetghebeur, Els
    Jacobs, Bart K. M.
    PLOS ONE, 2024, 19 (06):