Finite Element Simulation and Validation of Chip Formation and Cutting Forces in Dry and Cryogenic Cutting of Ti-6Al-4V

被引:32
|
作者
Davoudinejad, A. [1 ]
Chiappini, E. [2 ]
Tirelli, S. [2 ]
Annoni, M. [1 ]
Strano, M. [1 ]
机构
[1] Politecn Milan, Mech Engn Dept, Via La Masa 1, I-20156 Milan, Italy
[2] Lab MUSP, I-29122 Piacenza, Italy
关键词
Cryogenic machining; Titanium machining; Finite element modeling; Cutting forces; Chip formation; WEAR;
D O I
10.1016/j.promfg.2015.09.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ti-6Al-4V titanium alloy is a popular material in industrial applications (e.g. aerospace, oil & gas, medical) due to its superior mechanical properties, although its low thermal conductivity and high chemical reactivity with other materials make it a hard-to-cut material. A finite element model (FEM) was developed in the present investigation to simulate dry and cryogenic orthogonal cutting of Ti-6Al-4V by using TiAlN coated carbide inserts. Numerical prediction of the effect of the superior cryogenic cooling on chip formation, cutting and thrust forces were investigated. The simulations were validated by the comparison with experimental results. The model calibration was performed with experimental data on dry cutting and then the model was used for predicting the cryogenic cooling case. The validated FEM models were used to compare the chip formation in dry cutting and cryogenic cutting in order to point out some differences in terms of chip segmentation frequency and chip thickness and gain additional knowledge.
引用
收藏
页码:728 / 739
页数:12
相关论文
共 50 条
  • [41] Evolution of tool wear and its effect on cutting forces during dry machining of Ti-6Al-4V alloy
    Sun, Shoujin
    Brandt, Milan
    Mo, John P. T.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2014, 228 (02) : 191 - 202
  • [42] Effect of High Speed Dry End Milling on Surface Roughness and Cutting Forces of Ti-6Al-4V ELI
    Sharif, Safian
    Safari, Habib
    Izman, S.
    Kurniawan, D.
    ADVANCES IN APPLIED MECHANICS AND MATERIALS, 2014, 493 : 546 - 551
  • [43] A New Cutting Tool Design for Cryogenic Machining of Ti-6Al-4V Titanium Alloy
    Shokrani, Alborz
    Newman, Stephen T.
    MATERIALS, 2019, 12 (03)
  • [44] Cutting properties analysis of titanium alloy (Ti-6Al-4V) base on cryogenic cooling
    Rui, Tang
    Li, Hou
    Qi, Zhang
    Bo, Zhou
    Open Materials Science Journal, 2014, 8 (01): : 122 - 126
  • [45] Finite Element Analysis for Ti-6Al-4V in Ultrasonic-Vibration-Assisted Micro-Cutting
    Lu, Dong
    Huang, Hongfu
    Wu, Yongbo
    Yang, Mingming
    ADVANCES IN MATERIALS PROCESSING X, 2012, 500 : 345 - +
  • [46] Cutting properties analysis of titanium alloy (Ti-6al-4v) base on cryogenic cooling
    Li, Hou, 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (08):
  • [47] Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration
    Yi, Shuang
    Li, Jinjin
    Zhu, Jiahua
    Wang, Xiangzhi
    Mo, John
    Ding, Songlin
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 49 (35-49) : 35 - 49
  • [48] Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V
    Ke, Qingchan
    Xu, Daochun
    Xiong, Danping
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (01) : 309 - 316
  • [49] Effect of anisotropy and cutting speed on chip morphology of Ti-6Al-4V under high-speed cutting
    Shi, Qihang
    Pan, Yongzhi
    Fu, Xiuli
    Zhou, Bin
    Zhang, Zewen
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (9-10): : 2883 - 2894
  • [50] Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V
    Qingchan Ke
    Daochun Xu
    Danping Xiong
    Journal of Mechanical Science and Technology, 2017, 31 : 309 - 316