Similarity solution to fractional nonlinear space-time diffusion-wave equation

被引:18
|
作者
Silva Costa, F. [1 ]
Marao, J. A. P. F. [1 ]
Alves Soares, J. C. [2 ]
Capelas de Oliveira, E. [2 ]
机构
[1] UEMA, DEMATI, Dept Math, BR-65054970 San Luis, MA, Brazil
[2] Univ Estadual Campinas, Imecc, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
关键词
ASYMPTOTIC-BEHAVIOR;
D O I
10.1063/1.4915293
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, the so-called fractional nonlinear space-time wave-diffusion equation is presented and discussed. This equation is solved by the similarity method using fractional derivatives in the Caputo, Riesz-Feller, and Riesz senses. Some particular cases are presented and the corresponding solutions are shown by means of 2-D and 3-D plots. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    INVERSE PROBLEMS, 2020, 36 (12)
  • [22] On the solution of the space-time fractional cubic nonlinear Schrodinger equation
    Yousif, E. A.
    Abdel-Salam, E. A-B.
    El-Aasser, M. A.
    RESULTS IN PHYSICS, 2018, 8 : 702 - 708
  • [23] Numerical solution of the conformable space-time fractional wave equation
    Yaslan, H. Cerdik
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (06) : 2916 - 2925
  • [24] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [25] The analytical solution and numerical solution of the fractional diffusion-wave equation with damping
    Chen, J.
    Liu, F.
    Anh, V.
    Shen, S.
    Liu, Q.
    Liao, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1737 - 1748
  • [26] Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain
    Om P. Agrawal
    Nonlinear Dynamics, 2002, 29 : 145 - 155
  • [27] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305
  • [28] Solution for a fractional diffusion-wave equation defined in a bounded domain
    Agrawal, OP
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 145 - 155
  • [29] CONTINUITY WITH RESPECT TO FRACTIONAL ORDER OF THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Nguyen Huy Tuan
    O'Regan, Donal
    Tran Bao Ngoc
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 773 - 793
  • [30] On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method
    M. S. Hashemi
    Mustafa Inc
    M. Parto-Haghighi
    Mustafa Bayram
    The European Physical Journal Plus, 134