Some Properties of K-Frames in Quaternionic Hilbert Spaces

被引:8
|
作者
Ellouz, Hanen [1 ]
机构
[1] Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
关键词
Frames; K-frames; Bessel sequence; Quaternionic Hilbert spaces;
D O I
10.1007/s11785-019-00964-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we discuss some properties of K-frames in quaternionic Hilbert spaces such as the invertibility of the frame operator as well as the interchangeability of two Bessel sequences. Further, we propose several approaches to construct K-frames and we show that a T-frame can be constructed from a K-frame by the perturbation of a bounded linear operator T. Finally, we study the stability of K-frames under some perturbations.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Note on Frames in Quaternionic Hilbert Spaces
    Sharma, Sumit Kumar
    Sharma, Raksha
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2025, 22 (01):
  • [22] Woven Frames in Quaternionic Hilbert Spaces
    Sharma, S. K.
    Sharma, Nitin
    Poumai, Khole Timothy
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [23] Some results on K-frames
    Ramesan, Sithara
    Ravindran, K. T.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 583 - 589
  • [24] Equal-norm Parseval K-frames in Hilbert spaces with a new inequality
    Sadri, Vahid
    Rahimlou, Gholamreza
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [25] Equal-norm Parseval K-frames in Hilbert spaces with a new inequality
    Vahid Sadri
    Gholamreza Rahimlou
    Journal of Inequalities and Applications, 2022
  • [26] Some results on K-frames
    Ramesan, Sithara
    Ravindran, K.T.
    Italian Journal of Pure and Applied Mathematics, 2020, 43 : 583 - 589
  • [27] Sum of K-Frames in Hilbert C*-Modules
    Mahmoudieh, Mohammad
    Tabadkan, Gholamreza Abbaspour
    Arefijamaal, Aliakbar
    FILOMAT, 2020, 34 (06) : 1771 - 1780
  • [28] K-Frames in Super Hilbert C*-Modules
    Lfounoune, Abdellatif
    El Jazzar, Roumaissae
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [29] CONTROLLED K-FRAMES IN HILBERT C*-MODULES
    Rajput, Ekta
    Sahu, Nabin Kumar
    Mishra, Vishnu Narayan
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 91 - 107
  • [30] Tight K-frames and weaving of K-frames
    Xiangchun Xiao
    Kai Yan
    Guoping Zhao
    Yucan Zhu
    Journal of Pseudo-Differential Operators and Applications, 2021, 12