Characterizing (l, m)-walk-regular graphs

被引:11
|
作者
Dalfo, C. [1 ]
Fiol, M. A. [1 ]
Garriga, E.
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, ES-08034 Barcelona, Catalonia, Spain
关键词
Distance-regular graph; Walk-regular graph; Adjacency matrix; Spectrum; Predistance polynomial; Preintersection number; ADJACENCY POLYNOMIALS;
D O I
10.1016/j.laa.2010.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G with diameter D and d + 1 distinct eigenvalues is said to be (l, m)-walk-regular, for some integers l is an element of [0,d] and m is an element of [0,D], l >= m, if the number of walks of length i is an element of[0,l] between any pair of vertices at distance j is an element of [0, m] depends only on the values of i and j. In this paper, we study some algebraic and combinatorial characterizations of (l, m)-walk-regularity based on the so-called predistance polynomials and the preintersection numbers. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1821 / 1826
页数:6
相关论文
共 50 条
  • [31] Critical window for the vacant set left by random walk on random regular graphs
    Cerny, Jiri
    Teixeira, Augusto
    RANDOM STRUCTURES & ALGORITHMS, 2013, 43 (03) : 313 - 337
  • [32] 2-Walk-regular graphs with a small number of vertices compared to the valency
    Qiao, Zhi
    Koolen, Jack H.
    Park, Jongyook
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 10 - 24
  • [33] Three-Weight Codes over Rings and Strongly Walk Regular Graphs
    Minjia Shi
    Michael Kiermaier
    Sascha Kurz
    Patrick Solé
    Graphs and Combinatorics, 2022, 38
  • [34] Characterizing paths as m-step competition graphs
    Kuhl, Jaromy
    Swan, Brandon Christopher
    DISCRETE MATHEMATICS, 2010, 310 (19) : 2555 - 2559
  • [35] QUASI m-CAYLEY STRONGLY REGULAR GRAPHS
    Kutnar, Klavdija
    Malnic, Aleksander
    Martinez, Luis
    Marusic, Dragan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 1199 - 1211
  • [36] STRONGLY REGULAR GRAPHS WITH SMALLEST EIGENVALUE-M
    NEUMAIER, A
    ARCHIV DER MATHEMATIK, 1980, 33 (04) : 392 - 400
  • [38] M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search
    Shen, Yelong
    Chen, Jianshu
    Huang, Po-Sen
    Guo, Yuqing
    Gao, Jianfeng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [39] Optimal quantum-walk search on Kronecker graphs with dominant or fixed regular initiators
    Glos, Adam
    Wong, Thomas G.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [40] On (l, m)-regular bipartition triples
    Naika, M. S. Mahadeva
    Nayaka, S. Shivaprasada
    AFRIKA MATEMATIKA, 2020, 31 (02) : 249 - 261