Characterizing (l, m)-walk-regular graphs

被引:11
|
作者
Dalfo, C. [1 ]
Fiol, M. A. [1 ]
Garriga, E.
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, ES-08034 Barcelona, Catalonia, Spain
关键词
Distance-regular graph; Walk-regular graph; Adjacency matrix; Spectrum; Predistance polynomial; Preintersection number; ADJACENCY POLYNOMIALS;
D O I
10.1016/j.laa.2010.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G with diameter D and d + 1 distinct eigenvalues is said to be (l, m)-walk-regular, for some integers l is an element of [0,d] and m is an element of [0,D], l >= m, if the number of walks of length i is an element of[0,l] between any pair of vertices at distance j is an element of [0, m] depends only on the values of i and j. In this paper, we study some algebraic and combinatorial characterizations of (l, m)-walk-regularity based on the so-called predistance polynomials and the preintersection numbers. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1821 / 1826
页数:6
相关论文
共 50 条
  • [1] On (l, m)-Walk-regular Digraphs
    Liu, Wen
    ARS COMBINATORIA, 2011, 100 : 281 - 287
  • [2] Strongly walk-regular graphs
    van Dam, E. R.
    Omidi, G. R.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (04) : 803 - 810
  • [3] Directed strongly walk-regular graphs
    E. R. van Dam
    G. R. Omidi
    Journal of Algebraic Combinatorics, 2018, 47 : 623 - 639
  • [4] Walk-regular divisible design graphs
    Dean Crnković
    Willem H. Haemers
    Designs, Codes and Cryptography, 2014, 72 : 165 - 175
  • [5] Directed strongly walk-regular graphs
    van Dam, E. R.
    Omidi, G. R.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 47 (04) : 623 - 639
  • [6] Walk-regular divisible design graphs
    Crnkovic, Dean
    Haemers, Willem H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) : 165 - 175
  • [7] FEASIBILITY CONDITIONS FOR THE EXISTENCE OF WALK-REGULAR GRAPHS
    GODSIL, CD
    MCKAY, BD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 30 (APR) : 51 - 61
  • [8] On the Laplacian spectrum and walk-regular hypergraphs
    Rodríguez, JA
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03): : 285 - 297
  • [9] A walk-regular graph, cospectral to its complement, need not be strongly regular
    Stevanovic, Sanja
    Stevanovic, Dragan
    DISCRETE MATHEMATICS, 2023, 346 (10)
  • [10] On k-Walk-Regular Graphs
    Dalfo, C.
    Fiol, M. A.
    Garriga, E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):