Data-Driven Estimation of Infinitesimal Generators of Stochastic Systems

被引:5
|
作者
Nejati, Ameneh [1 ]
Lavaei, Abolfazl [2 ]
Soudjani, Sadegh [3 ]
Zamani, Majid [4 ,5 ]
机构
[1] Tech Univ Munich, Dept Elect Engn, Munich, Germany
[2] Swiss Fed Inst Technol, Inst Dynam Syst & Control, Zurich, Switzerland
[3] Newcastle Univ, Sch Comp, Newcastle Upon Tyne, Tyne & Wear, England
[4] Univ Colorado Boulder, Dept Comp Sci, Boulder, CO USA
[5] Ludwig Maximilians Univ Munchen, Munich, Germany
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 05期
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Continuous-time stochastic systems; Data-driven estimation; Infinitesimal generators; SWITCHED SYSTEMS;
D O I
10.1016/j.ifacol.2021.08.511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with a data-driven approach for the estimation of infinitesimal generators of continuous-time stochastic systems with unknown dynamics. We first approximate the infinitesimal generator of the solution process via a set of data collected from trajectories of the unknown system. The approximation utilizes both time discretization and sampling from the solution process. Assuming proper continuity assumptions on dynamics of the system, we then quantify the closeness between the infinitesimal generator and its approximation while providing a priori guaranteed confidence bound. We demonstrate that both the time discretization and the number of data play significant roles in providing a reasonable closeness precision. Moreover, for a fixed size of data, variance of the estimation converges to infinity when the time discretization parameter goes to zero. The formulated error bound shows how to pick proper data size and time discretization jointly to prevent this counter-intuitive behavior. The proposed results are demonstrated on a case study. Copyright (C) 2021 The Authors.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [1] Poster: Estimating Infinitesimal Generators of Stochastic Systems with Formal Error Bounds: A Data-Driven Approach
    Lavaei, Abolfazl
    Nejati, Ameneh
    Soudjani, Sadegh
    Zamani, Majid
    [J]. HSCC2021: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (PART OF CPS-IOT WEEK), 2021,
  • [2] Estimation of Infinitesimal Generators for Unknown Stochastic Hybrid Systems via Sampling: A Formal Approach
    Nejati, Ameneh
    Lavaei, Abolfazl
    Soudjani, Sadegh
    Zamani, Majid
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 223 - 228
  • [3] Data-driven closures for stochastic dynamical systems
    Brennan, Catherine
    Venturi, Daniele
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 281 - 298
  • [4] Data-Driven Observability Analysis for Nonlinear Stochastic Systems
    Massiani, Pierre-Francois
    Buisson-Fenet, Mona
    Solowjow, Friedrich
    Di Meglio, Florent
    Trimpe, Sebastian
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) : 4042 - 4049
  • [5] Data-Driven Stochastic Scheduling for Energy Integrated Systems
    Yang, Heng
    Jin, Ziliang
    Wang, Jianhua
    Zhao, Yong
    Wang, Hejia
    Xiao, Weihua
    [J]. ENERGIES, 2019, 12 (12)
  • [6] Data-Driven Stochastic Averaging
    Li, Junyin
    Huang, Zhanchao
    Wang, Yong
    Huang, Zhilong
    Zhu, Weiqiu
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2024, 91 (01):
  • [7] Data-driven modeling and parameter estimation of nonlinear systems
    Kaushal Kumar
    [J]. The European Physical Journal B, 2023, 96
  • [8] Data-driven modeling and parameter estimation of nonlinear systems
    Kumar, Kaushal
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (07):
  • [9] Data-driven estimation of interdependencies and restoration of infrastructure systems
    Monsalve, Mauricio
    Carlos de la Llera, Juan
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 181 : 167 - 180
  • [10] Learning effective dynamics from data-driven stochastic systems
    Feng, Lingyu
    Gao, Ting
    Dai, Min
    Duan, Jinqiao
    [J]. CHAOS, 2023, 33 (04)