Highly Sensitive and Robust Polysaccharide-Based Composite Hydrogel Sensor Integrated with Underwater Repeatable Self-Adhesion and Rapid Self-Healing for Human Motion Detection

被引:157
|
作者
Ling, Qiangjun [1 ,2 ]
Liu, Wentao [1 ,2 ]
Liu, Jiachang [1 ,2 ]
Zhao, Li [1 ,2 ]
Ren, Zhijun [1 ,2 ]
Gu, Haibin [1 ,2 ]
机构
[1] Sichuan Univ, Key Lab Leather Chem & Engn, Minist Educ, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Natl Engn Res Ctr Clean Technol Leather Ind, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogel strain sensor; chitosan; carboxymethyl cellulose; underwater self-healing; underwater repeatable adhesion; DOUBLE NETWORK HYDROGEL; ANTIBACTERIAL HYDROGEL; TOUGHNESS; SKIN;
D O I
10.1021/acsami.2c01785
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tough, biocompatible, and conductive hydrogel-based strain sensors are attractive in the fields of human motion detection and wearable electronics, whereas it is still a great challenge to simultaneously integrate underwater adhesion and self-healing properties into one hydrogel sensor. Here, a highly stretchable, sensitive, and multifunctional polysaccharide-based dual-network hydrogel sensor was constructed using dialdehyde carboxymethyl cellulose (DCMC), chitosan (CS), poly(acrylic acid) (PAA), and aluminum ions (Al3+). The obtained DCMC/CS/PAA (DCP) composite hydrogels exhibit robust mechanical strength and good adhesive and self-healing properties, due to the reversible dynamic chemical bonds and physical interactions such as Schiff base bonds and metal coordination. The conductivity of hydrogel is 2.6 S/m, and the sensitivity (gauge factor (GF)) is up to 15.56. Notably, the DCP hydrogel shows excellent underwater repeatable adhesion to animal tissues and good self-healing properties in water (self-healing rate > 90%, self-healing time < 10 min). The DCP hydrogel strain sensor can sensitively monitor human motion including finger bending, smiling, and wrist pulse, and it can steadily detect human movement underwater. This work is expected to provide a new strategy for the design of high-performance intelligent sensors, particularly for applications in wet and underwater environments.
引用
收藏
页码:24741 / 24754
页数:14
相关论文
共 50 条
  • [21] Preparation of high strength, self-healing conductive hydrogel based on polysaccharide and its application in sensor
    Wang, Junxiao
    Sawut, Amatjan
    Simayi, Rena
    Song, Huijun
    Jiao, Xueying
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2024, 150
  • [22] Self-healing/pH-responsive/inherently antibacterial polysaccharide-based hydrogel for a photothermal strengthened wound dressing
    Xue, Chenglong
    Xu, Xiaomei
    Zhang, Li
    Liu, Yu
    Liu, Shupeng
    Liu, Zhicheng
    Wu, Mingyuan
    Shuai, Qi
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 218
  • [23] Low modulus hydrogel-like elastomer sensors with ultra-fast self-healing, underwater self-adhesion, high durability/stability and recyclability for bioelectronics
    Li, Zhenlong
    Xu, Huiru
    Deng, Zexing
    Guo, Baolin
    Zhang, Jie
    [J]. NANO TODAY, 2024, 59
  • [24] Highly Sensitive, Degradable, and Rapid Self-Healing Hydrogel Sensor with Semi-Interpenetrating Network for Recognition of Micro-Expressions
    Di, Xiang
    Li, Liqi
    Jin, Qi
    Yang, Ran
    Li, Yuan
    Wang, Xiaoliang
    Wu, Guolin
    Yuan, Chungang
    [J]. SMALL, 2024,
  • [25] Self-Healing, Wet-Adhesion silk fibroin conductive hydrogel as a wearable strain sensor for underwater applications
    Zheng, Haiyan
    Chen, Ming
    Sun, Yusheng
    Zuo, Baoqi
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [26] Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring
    Li, Xing
    Ma, Yinghui
    Li, Dacheng
    Lu, Shaorong
    Li, Yuqi
    Li, Ziwei
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 223 : 1530 - 1538
  • [27] Highly Sensitive and Stable Flexible Sensors Based on Antifreezing and Self-Healing Double-Network Composite Hydrogels for Human Motion Monitoring
    Li, Pan
    Zhou, Tianjun
    Bai, Liangjiu
    Chen, Hou
    Wang, Wenxiang
    Yang, Huawei
    Yang, Lixia
    Wei, Donglei
    [J]. ACS APPLIED POLYMER MATERIALS, 2023, 5 (09) : 7621 - 7630
  • [28] Highly stretchable and self-healing double network hydrogel based on polysaccharide and polyzwitterion for wearable electric skin
    Zhang, Jing
    Chen, Lingdong
    Shen, Biao
    Mo, Jiaying
    Tang, Feiyu
    Feng, Jie
    [J]. POLYMER, 2020, 194
  • [29] Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds
    Jin, Shanshan
    Mia, Rajib
    Newton, Md All Amin
    Cheng, Hongju
    Gao, Weihong
    Zheng, Yuansheng
    Dai, Zijian
    Zhu, Jie
    [J]. CARBOHYDRATE POLYMERS, 2024, 339
  • [30] 3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking
    Roh, Hyun-Ho
    Kim, Hyun-Seung
    Kim, Chunggoo
    Lee, Kuen-Yong
    [J]. BIOMEDICINES, 2021, 9 (09)