共 50 条
Highly Sensitive and Robust Polysaccharide-Based Composite Hydrogel Sensor Integrated with Underwater Repeatable Self-Adhesion and Rapid Self-Healing for Human Motion Detection
被引:157
|作者:
Ling, Qiangjun
[1
,2
]
Liu, Wentao
[1
,2
]
Liu, Jiachang
[1
,2
]
Zhao, Li
[1
,2
]
Ren, Zhijun
[1
,2
]
Gu, Haibin
[1
,2
]
机构:
[1] Sichuan Univ, Key Lab Leather Chem & Engn, Minist Educ, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Natl Engn Res Ctr Clean Technol Leather Ind, Chengdu 610065, Peoples R China
基金:
中国国家自然科学基金;
关键词:
hydrogel strain sensor;
chitosan;
carboxymethyl cellulose;
underwater self-healing;
underwater repeatable adhesion;
DOUBLE NETWORK HYDROGEL;
ANTIBACTERIAL HYDROGEL;
TOUGHNESS;
SKIN;
D O I:
10.1021/acsami.2c01785
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Tough, biocompatible, and conductive hydrogel-based strain sensors are attractive in the fields of human motion detection and wearable electronics, whereas it is still a great challenge to simultaneously integrate underwater adhesion and self-healing properties into one hydrogel sensor. Here, a highly stretchable, sensitive, and multifunctional polysaccharide-based dual-network hydrogel sensor was constructed using dialdehyde carboxymethyl cellulose (DCMC), chitosan (CS), poly(acrylic acid) (PAA), and aluminum ions (Al3+). The obtained DCMC/CS/PAA (DCP) composite hydrogels exhibit robust mechanical strength and good adhesive and self-healing properties, due to the reversible dynamic chemical bonds and physical interactions such as Schiff base bonds and metal coordination. The conductivity of hydrogel is 2.6 S/m, and the sensitivity (gauge factor (GF)) is up to 15.56. Notably, the DCP hydrogel shows excellent underwater repeatable adhesion to animal tissues and good self-healing properties in water (self-healing rate > 90%, self-healing time < 10 min). The DCP hydrogel strain sensor can sensitively monitor human motion including finger bending, smiling, and wrist pulse, and it can steadily detect human movement underwater. This work is expected to provide a new strategy for the design of high-performance intelligent sensors, particularly for applications in wet and underwater environments.
引用
收藏
页码:24741 / 24754
页数:14
相关论文