Potential use of microbial engineering in single-cell protein production

被引:19
|
作者
Balagurunathan, Balaji [1 ]
Ling, Hua [2 ,3 ,4 ,5 ]
Choi, Won Jae [1 ,2 ,3 ,4 ,6 ,7 ]
Chang, Matthew Wook [2 ,3 ,4 ,5 ]
机构
[1] Agcy Sci Technol & Res A STAR 1, Singapore Inst Food & Biotechnol Innovat, 1,Pesek Rd, Singapore 627833, Singapore
[2] Natl Univ Singapore, NUS Synthet Biol Clin & Technol Innovat SynCTI, 28 Med Dr, Singapore 117456, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Synthet Biol Translat Res Programme, 28 Med Dr, Singapore 117456, Singapore
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, 8 Med Dr, Singapore 117597, Singapore
[5] Natl Univ Singapore, Wilmar NUS Corp Lab WIL NUS, 14 Med Dr, Singapore 117599, Singapore
[6] Agcy Sci Technol & Res Singapore STAR, Inst Chem & Engn Sci, 1 Pesek Rd, Singapore 627833, Singapore
[7] Singapore Inst Technol, 10 Dover Dr, Singapore 138683, Singapore
基金
新加坡国家研究基金会;
关键词
XYLOSE UTILIZATION; SYNTHETIC BIOLOGY; IMPROVE; PATHWAY;
D O I
10.1016/j.copbio.2022.102740
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell proteins (SCPs) have been widely used in human food and animal feed applications, still, there are challenges in their production and commercialization. Recently, advances in microbial synthetic biology, genomic engineering, and biofoundry technologies have offered capabilities to effectively and rapidly engineer microorganisms for improving the productivity, nutritional, and functional quality of SCPs. In this review, we discuss various synthetic biology, genomic engineering, and biofoundry tools that can be harnessed for SCP production and genetic modification. We also describe the current and potential applications of genetic modification in producing intermediate feedstocks, as well as biomass-based and multifunctional SCPs. Finally, we discuss the technological and policy-control related challenges encountered when deploying genetic modification in SCP production for animal feed and human food applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ENGINEERING FACTORS IN SINGLE-CELL PROTEIN PRODUCTION .1. FLUID PROPERTIES AND CONCENTRATION OF YEAST BY EVAPORATION
    LABUZA, TP
    SANTOS, DB
    ROOP, RN
    BIOTECHNOLOGY AND BIOENGINEERING, 1970, 12 (01) : 123 - &
  • [32] The trajectory of microbial single-cell sequencing
    Tanja Woyke
    Devin F R Doud
    Frederik Schulz
    Nature Methods, 2017, 14 : 1045 - 1054
  • [33] STUDIES ON THE POTENTIAL OF CASHEW APPLE FOR BIOCONVERSION TO SINGLE-CELL PROTEIN
    SOLOMON, BO
    LAYOKUN, SK
    PROCESS BIOCHEMISTRY, 1988, 23 (04) : 97 - 99
  • [34] Single-cell transcriptomics for microbial eukaryotes
    Kolisko, Martin
    Boscaro, Vittorio
    Burki, Fabien
    Lynn, Denis H.
    Keeling, Patrick J.
    CURRENT BIOLOGY, 2014, 24 (22) : R1081 - R1082
  • [35] The trajectory of microbial single-cell sequencing
    Woyke, Tanja
    Doud, Devin F. R.
    Schulz, Frederik
    NATURE METHODS, 2017, 14 (11) : 1045 - 1054
  • [36] Microbial analysis at the single-cell level
    Alberghina, L
    Porro, D
    Shapiro, H
    Srienc, F
    Steen, H
    JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 42 (01) : 1 - 2
  • [37] Single-cell protein production by Pleurotus ostreatus in submerged fermentation
    Bakratsas, Georgios
    Polydera, Angeliki
    Nilson, Oskar
    Kossatz, Lalie
    Xiros, Charilaos
    Katapodis, Petros
    Stamatis, Haralambos
    SUSTAINABLE FOOD TECHNOLOGY, 2023, 1 (03): : 377 - 389
  • [38] PRODUCTION OF SINGLE-CELL PROTEIN WITH CELLULOMONAS SP ON HEMPSTALK WASTES
    JEDER, H
    DESCHAMPS, AM
    LEBEAULT, JM
    ACTA BIOTECHNOLOGICA, 1987, 7 (02): : 103 - 109
  • [39] ECONOMIC-ANALYSIS OF GENETIC-ENGINEERING - SINGLE-CELL PROTEIN
    MATELES, RI
    CHEMICAL ENGINEERING COMMUNICATIONS, 1986, 45 (1-6) : 213 - 216
  • [40] Single-Cell Approach in Influenza Vaccine Production: Apoptosis and Virus Protein Production
    Schulze-Horsel, Josef
    Schulze, Mareike
    Genzel, Yvonne
    Reichl, Udo
    CELLS AND CULTURE, 2010, 4 : 25 - 28