Potential use of microbial engineering in single-cell protein production

被引:19
|
作者
Balagurunathan, Balaji [1 ]
Ling, Hua [2 ,3 ,4 ,5 ]
Choi, Won Jae [1 ,2 ,3 ,4 ,6 ,7 ]
Chang, Matthew Wook [2 ,3 ,4 ,5 ]
机构
[1] Agcy Sci Technol & Res A STAR 1, Singapore Inst Food & Biotechnol Innovat, 1,Pesek Rd, Singapore 627833, Singapore
[2] Natl Univ Singapore, NUS Synthet Biol Clin & Technol Innovat SynCTI, 28 Med Dr, Singapore 117456, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Synthet Biol Translat Res Programme, 28 Med Dr, Singapore 117456, Singapore
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, 8 Med Dr, Singapore 117597, Singapore
[5] Natl Univ Singapore, Wilmar NUS Corp Lab WIL NUS, 14 Med Dr, Singapore 117599, Singapore
[6] Agcy Sci Technol & Res Singapore STAR, Inst Chem & Engn Sci, 1 Pesek Rd, Singapore 627833, Singapore
[7] Singapore Inst Technol, 10 Dover Dr, Singapore 138683, Singapore
基金
新加坡国家研究基金会;
关键词
XYLOSE UTILIZATION; SYNTHETIC BIOLOGY; IMPROVE; PATHWAY;
D O I
10.1016/j.copbio.2022.102740
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell proteins (SCPs) have been widely used in human food and animal feed applications, still, there are challenges in their production and commercialization. Recently, advances in microbial synthetic biology, genomic engineering, and biofoundry technologies have offered capabilities to effectively and rapidly engineer microorganisms for improving the productivity, nutritional, and functional quality of SCPs. In this review, we discuss various synthetic biology, genomic engineering, and biofoundry tools that can be harnessed for SCP production and genetic modification. We also describe the current and potential applications of genetic modification in producing intermediate feedstocks, as well as biomass-based and multifunctional SCPs. Finally, we discuss the technological and policy-control related challenges encountered when deploying genetic modification in SCP production for animal feed and human food applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] USE OF BIOTECHNOLOGY IN THE PRODUCTION OF SINGLE-CELL PROTEIN
    BATT, CA
    SINSKEY, AJ
    FOOD TECHNOLOGY, 1984, 38 (02) : 108 - 111
  • [2] Microbial production of single-cell protein from deproteinized whey concentrates
    Nadja Schultz
    Lifung Chang
    Achim Hauck
    Matthias Reuss
    Christoph Syldatk
    Applied Microbiology and Biotechnology, 2006, 69 : 515 - 520
  • [3] Microbial production of single-cell protein from deproteinized whey concentrates
    Schultz, N
    Chang, LF
    Hauck, A
    Reuss, M
    Syldatk, C
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 69 (05) : 515 - 520
  • [4] Microbial response to single-cell protein production and brewery wastewater treatment
    Lee, Jackson Z.
    Logan, Andrew
    Terry, Seth
    Spear, John R.
    MICROBIAL BIOTECHNOLOGY, 2015, 8 (01): : 65 - 76
  • [5] USE OF ALFALFA RESIDUAL JUICE FOR PRODUCTION OF SINGLE-CELL PROTEIN
    PAREDESL.O
    CAMARGO, E
    EXPERIENTIA, 1973, 29 (10): : 1233 - 1234
  • [6] INDUSTRIAL PRODUCTION OF SINGLE-CELL PROTEIN
    DIMMLING, W
    SEIPENBUSCH, R
    ERDOL & KOHLE ERDGAS PETROCHEMIE, 1975, 28 (03): : 146 - 146
  • [7] A NOVEL THERMOTOLERANT METHYLOTROPHIC BACILLUS SP AND ITS POTENTIAL FOR USE IN SINGLE-CELL PROTEIN-PRODUCTION
    BANAT, IM
    MURAD, M
    HAMDAN, IY
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1992, 8 (03): : 290 - 295
  • [8] PHYSIOLOGICAL-CHARACTERISTICS OF 4 METHYLOTROPHIC BACTERIA AND THEIR POTENTIAL USE IN SINGLE-CELL PROTEIN-PRODUCTION
    BANAT, IM
    ALAWADHI, N
    HAMDAN, IY
    MIRCEN-JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 5 (02): : 149 - 159
  • [9] ENGINEERING FACTORS IN SINGLE-CELL PROTEIN PRODUCTION .2. SPRAY DRYING AND CELL VIABILITY
    LABUZA, TP
    LEROUX, JP
    FAN, TS
    TANNENBAUM, SR
    BIOTECHNOLOGY AND BIOENGINEERING, 1970, 12 (01) : 135 - +
  • [10] Microbial conversion of waste gases into single-cell protein
    Jain, Surbhi
    Heffernan, James
    Joshi, Jitendra
    Watts, Thomas
    Marcellin, Esteban
    Greening, Chris
    MICROBIOLOGY AUSTRALIA, 2023, 44 (01) : 27 - 30